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Preface

Welcome to the workshop on Distance Geometry and Applications (DGA13)! This is, to the
best of our knowledge, the first workshop wholly dedicated to Distance Geometry (DG).

DG sets the concept of distance at the basis of Euclidean geometry. The fundamental
problem of DG is an inverse problem, i.e., finding a set of points in Euclidean space, such that
a given subset of their pairwise distances are equal to some given values. Besides the beauty of
the mathematical theory associated to DG, the interest in this research topic is explained by the
richness and variety of its applications. To cite the main ones: structural biology, mobile sensor
networks, statics, analysis of data, robotics, clock synchronization, astronomy and music.

Some time ago, we noticed that the academic community working on DG is fragmented. It
seems that the primary interest is in the applications, rather than the theory and methods
that stand behind it. Researchers focusing on molecular structures publish regularly in bioin-
formatics and global optimization journals; those focusing on sensor networks often publish in
network-related as well as on SIAM journals; those working on structural rigidity mostly pub-
lish on graph theory and combinatorics journals. Other communities (for example in robotics
or data analysis) target yet other journals. All of us send papers to a very diverse variety
of conferences: discrete mathematics, computer science, network technology, robotics, statis-
tics and more. Although these boundaries are far from strict, the most visible effect of this
fragmentation is the different formalizations of very similar ideas across the application fields.
Although it is certainly very positive to have such a diverse and seemingly all-encompassing
application range at our disposal, we feel we can all profit from referring to a somewhat better
defined “DG community”.

This workshop is part of a set of actions some of us are carrying out as an effort towards
shaping the DG community: an edited book and several surveys were recently published (one
will appear in SIAM Review). We hope this is just the beginning, and shall work towards
making DGA2013 the first of a long sequence. A special issue of Discrete Applied Mathematics
(DAM) will be dedicated to this workshop. All participants are invited to submit full papers.

We wish to thank the invited speakers, the scientific and local organizing committee mem-
bers, the referees of the contributed papers, as well as our funding sponsors: CNPq, CAPES,
FAPESP, FAPEAM, EMC2, MCM, iNdT, SECTI, Ecole Polytechnique (France).

Alessandro Andrioni (Campinas, Brazil)
Rosiane de Freitas (Manaus, Brazil)
Carlile Lavor (Campinas, Brazil)
Leo Liberti (Yorktown Heights, USA)
Nelson Maculan (Rio de Janeiro, Brazil)
Antonio Mucherino (Rennes, France)
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DGA 2013, pp. 3 – 3.

Discrete conformational states and the energy landscape of
proteins: demand for computational methods for structure
calculation of excited states

Fábio Almeida1

1Federal University of Rio de Janeiro, Brazil

Abstract Proteins are dynamic entities that move in a hierarchy of timescales that goes from picoseconds to
seconds. The energy landscape of a protein defines the thermally accessible conformational states.
The energy of each state defines the relative population and the energy of the transition-state
defines protein dynamics. Motions that occur in microseconds to seconds are a result of energy
barriers that are bigger than thermal energy. They are known as conformational exchange and
define biologically relevant processes that are frequently involved in binding and allostery. In this
talk we will show the importance of computational methods to calculate the structure of discrete
excited states and to evaluate the energy landscape of proteins. We will show how the mapping
of regions in conformational exchange leaded to the discovery of membrane binding sites in plant
defensins. Defensins share the same fold, but display significant difference in dynamics. Structure
of excited states reveals the reason of success of Cys-knot folding of defensins. We will also show
how water-permeable excited states contribute to proton transfer and catalysis of thioredoxins.





DGA 2013, pp. 5 – 5.

An Alternative Approach to Distance Geometry Using L∞
Distances

Gordon Crippen1

1University of Michigan, USA

Abstract A standard task in distance geometry is to calculate one or more sets of Cartesian coordinates for a
set of points that satisfy given geometric constraints, such as bounds on some of the L2 distances.
Using instead L∞ distances is attractive because distance constraints can be expressed as simple
linear bounds on coordinates. Likewise, a given matrix of L∞ distances can be rather directly
converted to coordinates for the points. It can happen that multiple sets of coordinates correspond
precisely to the same matrix of L∞ distances, but the L2 distances vary only modestly. Practical
examples are given of calculating protein conformations from the sorts of distance constraints that
one can obtain from nuclear magnetic resonance experiments.





DGA 2013, pp. 7 – 7.

Distances and Geometry

Michel-Marie Deza1

1École Normale Supérieure, France

Abstract It is a tutorial-like survey, focused on definitions, of main distances used in Geometry. The Con-
tents is: 1-) Application example: distances in Data Clustering, 2-) Birdview on metric spaces
(Metric repairs, Generalizations of metric spaces, Metric transforms, Dimension, radii and other
numeric invariants of metric spaces, Relevant notions: special subsets, mappings, completeness,
Main classes of metric spaces), 3-) Example: distance geometry and similar graph problems, 4-)
Metric/Geodesic Geometry: curves, convexity etc., and 5-) Other geometric distances (Projective
and A ne Geometry, Distances on surfaces and knots, Distances on convex bodies and cones).





DGA 2013, pp. 9 – 9.

The self-calibrating solutions of all-sky space astrometry

Floor van Leeuwen1

1University of Cambridge, England

Abstract In space astrometry we determine positions of stars on the sky as a function of time, to derive their
distances, distribution and motions in space. This is done by measuring at very high accuracy large
angular distances between stars on the sky over a period of several years. One such experiment
is finished (the Hipparcos satellite mission), and one is to be launched later this year (the Gaia
satellite mission). Although this is not directly an application of distance geometry, the solution
mechanisms that transfer the 13 million one-dimensional measurements of large arcs on the sky,
collected over a three-year period by the Hipparcos satellite, to a final catalogue of positional
information for 118000 (moving) stars, is based on similar processes and faces similar problems. I
will present a brief background of space astrometry, the way it is done, and its possibilities and
limitations. Then I will show the basic measurements and their characteristic features, and how
one gets from these measurements to a full-sky catalogue of positional information. In particular
the measurement of the stellar parallax and the overall importance in astrophysics of distance
measurements will be described. Finally, some statistical properties of the catalogue are shown for
a case where the calibration of the instrumental effects has not been completely successful.





DGA 2013, pp. 11 – 11.

Distance Geometry: the past and the present

Leo Liberti1,2

1École Polytechnique, France

2IBM TJ Watson Research Center, USA

Abstract We present an overview of the themes and trends in Distance Geometry (DG) from its birth to cur-
rent research. Although DG appeared formally in the 1930s, some applications delve their roots in
more ancient times. Famous mathematicians (such as Godel) worked in DG. Nowadays, DG is being
developed by researchers in the following application fields: proteomics, wireless networks, statics,
robotics and statistics. Techniques for solving DG problems include local and global optimization,
semi-definite programming, differential equations, polynomial rings, combinatorial analysis, group
theory, oriented matroids and others.





DGA 2013, pp. 13 – 13.

The protein structures as constrained geometric objects

Thérèse Malliavin1

1Institut Pasteur, France

Abstract Proteins are polypeptides of amino-acids involved in most of the biological processes. In the last
50 years, the study of their structures at the molecular level revolutionized the vision of biology.
The three-dimensional structures of the proteins are geometric objects defined by the relative
positions of the protein atoms. The determination of these objects attract much interest as it is
closely related to the identification of their biological function. These objects can be determined
from inter-atomic distances measured by Nuclear Magnetic Resonance (NMR), and the lack of
precision of the measure produces variability in the protein structure. But the variability of the
protein structure does not only come from measurement imprecision, but is also due to protein
conformational equilibrium, which plays a major role into biological processes. Due to this intrinsic
variability, the protein structure is calculated by repeating the same optimization procedure with
changing the initialization seed. The algorithm for this iterative procedure stops when the repeated
protein structures are sufficiently superimposed to each other. The choice of the required level of
superimposition from a Bayesian analysis of the structure determination problem permits to obtain
a least-biased geometry in agreement with the best measure fit. As the protein structures are 3D
Euclidean geometric objects, the inter-atomic distances are linked by triangle inequalities. In that
way, the distances can be hierarchized through the estimation of their redundancy. I shall show
that this redundancy can be related to experimental observations on the energetic bases of protein
stability, and to protein dynamics and function.





DGA 2013, pp. 15 – 15.

Discretization Orders for Distance Geometry

Antonio Mucherino1

1Université de Rennes 1, France

Abstract The discretization of Distance Geometry Problems (DGPs) allows to reduce their search domains
to trees which are binary when all distances are exact. DGPs can be therefore seen as combinatorial
optimization problems, which we solve by employing an ad-hoc Branch & Prune (BP) algorithm,
that is potentially able to enumerate the entire solution set. Essential for the discretization are
some assumptions to be verified by DGP instances (we say that such instances belong to the
DMDGP class). When DGPs related to molecules are considered, the order given to the atoms of
the molecule plays an important role, because the discretizability of the instance is strongly related
to this order. In this talk, I will discuss on different approaches to this ordering problem, which
becomes a fundamental pre-processing step for applying BP. The case in which all distances are
exact, as well as the more realistic one in which there are imprecise distances, will be discussed in
details.





DGA 2013, pp. 17 – 17.

Distance-based formulations for the position analysis of
kinematic chains

Nicolas Rojas1

1SUTD-MIT International Design Center, Singapore

Abstract This talk addresses the problem of finding all possible assembly modes that a multi-loop linkage
can adopt. This problem arises when solving, for instance, the inverse kinematics of serial robots
or the forward kinematics of parallel robots. The first step to solve it consists in deriving a set
of closure conditions, that is, a set of equations that are satisfied if, and only if, the linkage is
correctly assembled. Most of the current techniques use as closure conditions a set of independent
loop equations. The use of independent loop equations has seldom been questioned despite the
resulting system of equations becomes quite involved even for simple linkages. In this talk, it will
be shown how Distance Geometry is of great help to get simpler sets of closure conditions. The
developed technique will be exemplified using different Baranov trusses, Assur kinematic chains,
and pin-jointed Grübler kinematic chains. As by-product of this technique, an efficient procedure
for tracing coupler curves of pin-jointed linkages will be also presented.





DGA 2013, pp. 19 – 19.

Topological Dimensionality Reduction

Vin de Silva1

1Pomona College, USA

Abstract High-dimensional data sets often carry meaningful low-dimensional structures. There are different
ways of extracting such structural information. The classic (circa 2000, with some anticipation in
the 1990s) strategy of nonlinear dimensionality reduction (NLDR) involves exploiting geometric
structure (geodesics, local linear geometry, harmonic forms etc) to find a small set of useful real-
valued coordinates. The classic (circa 2000, with some anticipation in the 1990s) strategy of
persistent topology calculates robust topological invariants based on a parametrized modification
of homology theory. In this talk, I will describe a marriage between these two strategies, and show
how persistent cohomology can be used to find circle-valued coordinate functions. I will go on to
describe some applications to dynamical systems. This is joint work with Dmitry Morozov, Primoz
Skraba, and Mikael Vejdemo-Johansson.





DGA 2013, pp. 21 – 21.

Localization by Global Registration

Amit Singer1

1Princeton University, USA

Abstract The distance geometry problem consists of estimating the locations of points from noisy measure-
ments of a subset of their pair-wise distances. The problem has received a great deal of attention in
recent years, due to its importance in applications such as wireless sensor networks and structural
biology. This talk will focus on recent divide-and-conquer approaches that solve the problem in
two steps: In the first step, the points are partitioned into smaller subsets and each subset is local-
ized separately into a local map, whereas in the second step a global map is obtained by stitching
together all the local maps. Results of numerical simulations demonstrate the advantages of this
approach in terms of accuracy and running time.





DGA 2013, pp. 23 – 23.

Distance Geometry Optimization and Applications

Zhijun Wu1

1Iowa State University, USA

Abstract A distance geometry problem is to find the coordinates for a set of points in a given metric space
given the distances for the pairs of points. The distances can be dense (given for all pairs of points)
or sparse (given only for a subset of all pairs of points). They can be provided with exact values or
with small errors. They may also be given with a set of ranges (lower and upper bounds). In any
case, the points need to be determined to satisfy all the given distance constraints. The distance
geometry problem has many important applications such as protein structure determination in
biology, sensor network localization in communication, and multidimensional scaling in statistical
classification. The problem can be formulated as a nonlinear system of equations or a nonlinear
least-squares problem, but it is computationally intractable in general. On the other hand, in
practice, many problem instances have tens of thousands of points, and an efficient and optimal
solution to the problem is required. In this talk, I will give a brief review on the formulation of
the distance geometry problem and its solution methods. I will then present a so-called geometric
buildup method and show how it can be applied to solve a distance geometry problem efficiently
and deal with various types of distance data, dense or sparse, exact or inexact, effectively. I will
also show how the method can be applied to a set of distance bounds and obtain an ensemble
of solutions to the problem. Some computational results on protein structure determination and
sensor network localization will be demonstrated.





DGA 2013, pp. 25 – 25.

Multicoloring of 3D hexagonal graphs

Janez Žerovnik1

1Fakulteta za strojništvo Ljubljana, Slovenia

Abstract A fundamental problem that appeared in the design of cellular networks is to assign sets of channels
to transmitters in order to avoid unacceptable interferences. In the 2D case, good approximation
algorithms exist that use the coordinates of the nodes that run in linear time (and even constant
time in parallel mode). Some results for the 3D have been recently obtained, again the coordinates
are assumed to be known. Because of the importance of this information it is interesting to ask
how difficiult it is, knowing the distances to the neighbors, to find an embedding of the graph that
would allow assigning at least approximate coordinates. This may provide efficient methods for
assigning channels to ad-hoc sensor networks.
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Counting the number of solutions of the Discretizable
Molecular Distance Geometry Problem ∗

Germano Abud1,2 and Jorge Alencar1

1Universidade Estadual de Campinas, IMECC- Unicamp, Campinas, São Paulo, Brazil. jorge.fa.lima@gmail.com

2Universidade Federal de Uberlândia, FAMAT-UFU, Uberlândia, Minas Gerais, Brazil. germano@famat.ufu.br

Abstract The Discretizable Molecular Distance Geometry Problem (DMDGP) is a subset of the Molecular
Distance Geometry Problem, where the solution space has a finite number of solutions. We propose
a way to count this value, based on the symmetric properties of the DMDGP.

Keywords: Branch-and-Prune, molecular distance geometry problem, number of solutions

1. Introduction

The Molecular Distance Geometry Problem (MDGP) arises in nuclear magnetic resonance
(NMR) spectroscopy analysis, which provides a set of inter-atomic distances dij for certain
pairs of atoms (i, j) of a given protein [3]. The question is how to use this set of distances in
order to calculate the positions x1, . . . , xn ∈ R3 of the atoms forming the molecule [11].

A simple undirected graph G = (V,E, d) can be associated to the problem, where V repre-
sents the set of atoms, E models the set of atom pairs for which a Euclidean distance is available,
and the function d : E → R+ assigns distance values to each pair in E. The MDGP can then
be formally defined as the following: given a weighted simple undirected graph G = (V,E, d),
is there a function x : V → R3 such that

||xi − xj || = dij ∀(i, j) ∈ E? (1)

Many algorithms have been proposed for the solution of the MDGP, and most of them are
based on a search in a continuous space [15].

Exploring some rigidity properties of the graph G, the search space can be discretized where
a subset of MDGP instances is defined as the Discretizable MDGP (DMDGP) [14]. The main
idea behind the discretization is that the intersection of three spheres in the three-dimensional
space consists of at most two points under the hypothesis in which their centers are not aligned.
The definition of an ordering on the atoms of the protein satisfying the conditions that distances
to at least three immediate predecessors are known and suggests a recursive search on a binary
tree containing the potential coordinates for the atoms of the molecule [5]. The binary tree of
possible solutions is explored starting from its top, where the first three atoms are positioned

∗Thanks to CAPES for financial support
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and by placing one vertex per time. At each step, two possible positions for the current vertex
v are computed, and two new branches are added to the tree. As soon as a position is found to
be infeasible, the corresponding branch is pruned and the search is backtracked. This strategy
defines an efficient algorithm called Branch and Prune (BP) [5].

We propose a way to count the number of solutions of the DMDGP, based on its symmetric
properties established in [8].

2. The Euclidean Distance Matrix Completion Problem

Functions (or realizations) x : V → R3 satisfying (1) are called valid realizations. Once a valid
realization is found, distances between all pairs of vertices can be determined, which extends
d : E → R+ to a function d′ : V ×V → R+, where the values of the function d′ can be arranged
into a square Euclidean distance matrix on the set D = {xv : v ∈ V } ⊂ R3. The pair (D, d′) is
known as a distance space [1].

In the Euclidean Distance Matrix Completion Problem (EDMCP) [9], the input is a partial
square symmetric matrix M and the output is a pair (M ′, k), where M ′ is a symmetric com-
pletion of M and k ∈ N such that: (a) M ′ is a Euclidean distance matrix in Rk and (b) k is
minimum as possible. We consider a variant of the EDMCP, called EDMCPk, where k = 3 is
actually given as part of the input and the output certificate for YES instances only consists
of the completion matrix M ′ of the partial matrix M as a Euclidean distance matrix (M ′ is
called a valid completion) [7].

There is a strong relationship between the MDGP and the EDMCP3: each MDGP instance
G can be transformed in linear time to an EDMCP3 instance (and vice versa [11]) by just
considering the weighted adjacency matrix of G where vertex pairs {u, v} /∈ E correspond to
entries missing from the matrix related to the EDMCP3 instance.

3. Counting the number of solutions of the DMDGP

As remarked in [10], the completion in R3 of a partial distance matrix with the structure
0 d12 d13 d14 ?
d21 0 d23 d24 d25
d31 d32 0 d34 d35
d41 d42 d43 0 d45
? d52 d53 d54 0


can be carried out in constant time by solving a quadratic system in the unknown d15, rep-
resented as a question mark in the matrix above derived from setting the Cayley-Menger
determinant [1] of the related distance space to zero.

The matrix above is an EDMCP3 instance related to some DMDGP instance. In fact, for
any DMDGP instance, we have an EDMCP3 instance given by a matrixM such that (at least)
the elements (Mij) satisfying |i− j| ≤ 3 are known [14].

We need now some results related to the symmetric properties of the DMDGP [8] (for a given
DMDGP instance G = (V,E) with |V | = n, let the distances dij of the associated EDMCP3
instance given according to the ordering on V that guarantees that all dij satisfying |i− j| ≤ 3
are known and consider that x1, x2, x3, x4 are fixed):

Theorem 1. Given an EDMCP3 instance of order n, related to some DMDGP instance, the
results below hold with probability 1 [8].

1. If the distance d1,n is known, there is just one solution to the given EDMCP3 instance.
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2. If all the distances di,i+4, i = 1, . . . n− 4, are known, there is also just one solution to the
given EDMCP3 instance.

3. There are just 2 possible (distinct) values for the unknown distances di,i+4, i = 1, . . . n−4,
related to the EDMCP3 instance.

In order to illustrate how to count the number of solutions of the DMDGP, consider the
following example of the EDMCP3 associated to some DMDGP instance (by the symmetry, we
only consider dij such that i ≤ j, for i, j = 1, · · · , n):

0 d12 d13 d14 ? d16 ? ? ? ? ? ?
0 d23 d24 d25 ? ? ? ? ? ? ?

0 d34 d35 d36 ? ? ? ? ? ?
0 d45 d46 d47 ? ? d4,10 ? ?

0 d56 d57 d58 ? ? ? ?
0 d67 d68 d69 ? ? ?

0 d78 d79 d7,10 ? ?
0 d89 d8,10 d8,11 ?

0 d9,10 d9,11 d9,12
0 d10,11 d10,12

0 d11,12
0



.

Define the k-diagonal as the subdiagonal of a simmetric matrix A of order n, whose elements
(Aij) satisfy |j − i| = k, k = 0, . . . , n− 1.

Since the distance d16 is known, there is just one possible value for the distances d15 and
d26 (by Result 1, considering V = {v1, v2, v3, v4, v5, v6}). Also, since the distance d4,10 is
known, there is just one possible value for the distances d48, d49,d59,d5,10 and d6,10 (by Result
1, considering V = {v4, v5, v6, v7, v8, v9, v10}). In order to complete the 4-diagonal, the only
missing distances are d37, d7,11, and d8,12. So, by Results 2 and 3, there are 23 possible solutions
to this EDMCP3 instance.

Based on these ideas, it is possible to define an efficient algorithm to count the number of
solutions of a given EDMCP3 instance related to some DMDGP instance. From the example
above, we can also notice that if we know, in fact, any k-diagonal of the matrix related to the
EDMCP3 instance, for k = 4, . . . , n−1, there is also just one solution to the EDMCP3 instance.

Now given a DMDGP instance, if we know the number of solutions to the related EDMCP3
then we also known the number of solutions (realizations) to the DMDGP instance. In fact,
each solution of the given EDMCP3 is asociated to two realizations (solutions) of the related
DMDGP, up to rotations and translations.

In [7], it is proposed a coordinate-free BP, called the dual BP, that takes decisions about
distance values on missing edges rather than on realizations of vertices in R3. The original
algorithm (the primal BP) decides on points xv ∈ R3 to assign to the next vertex v, whereas
the dual BP decides on distances δ to assign to the next missing distance incident to v and to
a predecessor of v. In addition to the formalization of the results of this work, we are studying
the possibilities to define a primal-dual BP algorithm in order to get a more efficient method
to solve DMDGP instances.
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Abstract We consider combinatorial generalizations of Jung’s theorem on covering the set with unit diameter
by a ball. We prove “fractional” and “colorful” versions of the theorem.

Keywords: Jung’s theorem, Helly’s theorem

The famous theorem of Jung states that any set with diameter 1 in Rd can be covered by a
ball of radius Rd =

√
d

2(d+1) (see [1]).
The proof of this Theorem is based on Helly’s theorem:

Theorem 1 (Helly’s theorem). Let P be a family of convex compact sets in Rd such that a
intersection of any d+ 1 of them is not empty, than the intersection of all of the sets from P
is not empty.

Helly’s theorem has many generalizations. M. Katchalski and A. Liu in 1979 [3] proved
“fractional” version of Helly’s theorem and G. Kalai in 1984 [2] gave a strongest version of
it. L. Lovász in 1979 suggested a “colorful” version of Helly’s theorem. We give analogues
generalizations of Jung’s theorem.

Theorem 2 (The fraction version of Jung’s theorem). For every d ≥ 1 and every α ∈ (0, 1]
there exists a β = β(d, α) > 0 with the following property. Let V be a n-point set in Rd such
that for at least αC2

n of pairs {x, y} (x, y ∈ V) distance between x and y less than 1. Then
there exists a ball with radius Rd, which covers βn points of V. And β → 1 as α→ 1.

We will use the following definition,

Definition 3. We call two nonempty sets V1 and V2 close, if for any points x ∈ V1 and y ∈ V2,
the distance between x and y is not greater than 1.

It is easy to see that if two close sets V1 and V2 are given, diameter of each of them is not
greater than 2. Moreover, the following theorem holds.

Theorem 4. Union of several pairwise close sets in Rd can be covered by a ball of radius 1.

It is clear that the diameter of the cover ball in this theorem could not be decreased. The
following two question have sense.

Suppose a family of pairwise close sets V1, V2, . . . , Vn in Rd is given.

1. What is the minimal R, so that at least one of the sets Vi can be covered by a ball of
radius R.

∗This research is supported by the Dynasty Foundation, Russian Foundation for Basic Research grants 12-01-31281 and
11-01-00735, and the Russian government project 11.G34.31.0053.
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2. What is the minimal D, so that at least one of the sets Vi has diameter no greater than D.

Theorem 5. Let V1, V2, . . . , Vn be pairwise close sets in Rd. Then one of the set Vi can be
covered by a ball with radius R.

R = 1√
2 if n ≤ d;

R = Rd =
√

d
2(d+1) if n > d.

Through Dd(n) we denote the minimal diameter of optimal spherical antipodal code of
cardinality 2n on the unit sphere Sd−1.

Theorem 6. Let V1, V2, . . . , Vn be pairwise close sets in Rd. Then one of the set Vi has
diameter not greater than

D = 2√
4−Dd(n)2 .
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Abstract Clustering are widely found in various applications on pattern recognition area as a tool for data
analysing. The vague and uncertain nature of data from many practical problems suggests the
need to develop clustering algorithms able to deal with such kind of datasets. Since the fuzzy set
theory provide a mathematical basis to handle uncertain concepts and informations, we introduce
a clustering method for datasets whose elements are represented by fuzzy sets. Our approach
corresponds to a modified version of a clustering algorithm of the literature for partitioning of the
sets of graphs that is based on spectral theory.

Keywords: Clustering, Fuzzy Sets, Spectral Methods, Graph, Distance Matrix.

1. Introduction

Clustering algorithms aim to divide the dataset in groups or clusters according to some rule,
so that, in the end, elements of a same cluster are similar while elements of disjoint clusters
are dissimilar in a certain sense [11]. Thus, clustering tasks depend on the choice of a certain
(dis)similarity measure for evaluating the (dis)similarity between elements of the considered
dataset. Clustering plays a important rule for data analysing and its application can founded
in a variety of areas, such as pattern recognition, image segmentation, genetics, and etc. [3, 5].

In this work, we introduce a new clustering algorithm based on spectral theory for dealing
with uncertain data represented by the class of fuzzy sets. In the following, we will recall some
basic concepts of fuzzy set theory.

A fuzzy subset A of non-empty universe U is represented by a function ϕA : U −→ [0, 1],
called membership function of A, where the value ϕA(u) denotes the degree of membership of
u ∈ U in the fuzzy subset A. In particular, a classic (crisp) subset A of U is a fuzzy subset
such that its membership function is its the characteristic function χA : U −→ {0, 1}. For
all α ∈ (0, 1], we define the α-cut of a fuzzy subset A of U , denoted by [A]α, by means of
set {u ∈ U |ϕA(u) ≥ α} ⊆ U . By definition, we set [A]0 as the closure of the set supp(A) =
{u ∈ U |ϕA(u) > 0}. Every fuzzy subset A of U is uniquely identified by its family of α-cuts
({[A]α}α∈[0,1]) [8]. From now on, for simplicity, we assume that U = R.

Let F(R) be the symbol that denotes the class of fuzzy set such that their α-cut are compact
subset of R for all α ∈ [0, 1]. The proposed clustering algorithm aims to partition F(R) from
a given finite subset of F(R). To this end, we consider as dissimilarity measure the metric D
on F(R) defined as

D(A,B) = sup
0≤α≤1

dH([A]α, [B]α), ∀A,B ∈ F(R), (1)
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where dH denotes Hausdorff’s metric for compact subset of R, i.e. for compact subsets I, J of
R we have

dH(I, J) = max
{

sup
x∈I

(
inf
j∈J
|x− j|

)
, sup
y∈J

(
inf
i∈I
|y − i|

)}
. (2)

By definition, the metric D extends dH , that is, if A,B ∈ F(R) represent compact crisp sets
then D(A,B) = dH(A,B). In particular, we have D({a}, {b}) = |a− b| if a, b ∈ R.

2. Methodology

Using the metric D on F(R) given in Equation (1), we propose a spectral-based clustering algo-
rithm for classes of fuzzy sets based on the algorithms named unnormalized spectral clustering
[6], normalized spectral clustering of Shi and Malik [9], and normalized spectral clustering of Ng
et al. [7]. In contrast with these algorithms, our approach takes account of a different set of
eigenvectors as well as includes a pre-processing in the input adjacency matrix of graph and
automatically adjusts the number of clusters. Let us point out such changes into following two
synthetic examples.

Let R1 = {pi}15
i=1 be a subset of R given as

R1 =


p1 = 8.147E − 001, p2 = 9.058E − 001, p3 = 1.270E − 001,
p4 = 9.134E − 001, p5 = 6.324E − 001, p6 = 5.098E + 000,
p7 = 5.278E + 000, p8 = 5.547E + 000, p9 = 5.958E + 000,
p10 = 5.965E + 000, p11 = 1.016E + 001, p12 = 1.097E + 001,
p13 = 1.096E + 001, p14 = 1.049E + 001, p15 = 1.080E + 001

 .
The set R1 comprises five elements of three disjoint clusters C1, C2, and C3. More specifically,
we have

C1 = {p1, p2, p3, p4, p5},
C2 = {p6, p7, p8, p9, p10},
C3 = {p11, p12, p13, p14, p15}.

We can interpret R1 as a set of fuzzy sets {p̂i}15
i=1 whose respective membership functions

ϕi : R −→ [0, 1] are given by

ϕi(x) =
{

1, if x = pi
0, if x 6= pi

for i = 1, . . . , 15. Using these fuzzy sets, we can yield a distance matrix D = (dij), where dij is
the distance with respect to the metric D between the fuzzy sets p̂i e p̂j for i, j = 1, . . . , 15. We
associate the matrix D to a weighted complete simple graph G such that its adjacency matrix,
denoted by A(G), is the matrix D, i.e. A(G) = D. Moreover, we can produce a minimum
spanning tree T from the graph G.

The number of produced clusters is an user-defined parameter of algorithms described in [6].
Our approach adjusts automatically a suitable number of cluster based on edge’s weight of the
tree T . Let p be the number of edges in T that their weights are greater than the sum of the
mean value and standard deviation of all weight values of edges in T . For j = 2, . . . , p+ 1, we
apply the spectral algorithms in order to determine j clusters. Thus, in the end, we have p
families of clusters for each spectral algorithm.

We chose the family of cluster among the p families that one with greatest value of Dunn’s
index [2, 10] by means of the following equation

min
1≤i1<i2≤j

{
dC(i1, i2)

max1≤i3≤j d
′(i3)

}
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where j denotes the number of clusters, dC(i1, i2) denotes the distance between the clusters i1
and i2, and d′(i3) denotes the greatest distance among the elements of cluster i3.

Given the maximum number of clusters, we can produce a subgraph H in G such that
H = ∪p+1

i=1Ti, where T1 = T and Ti, for i = 2, . . . , p + 1, denotes, respectively, the minimum
spanning tree of G[E(G) \ ∪i−1

j=1E(Tj)], i.e., the minimum spanning tree of the subgraph which
was obtained by cutting the edges in ∪i−1

j=1E(Tj) from the original graph G.
Let A(H) = (aij) be the adjacency matrix of H, we can obtain the graph H ′ such that the

coefficients of the adjacency A(H ′) = (a′ij) are given by

a′ij = 1− 1
2 · ‖A(H)‖max

aij , if i ∼ j in H,

where ‖A(H)‖max = maxi,j |aij |. In the resulting graph H ′, we apply the three aforementioned
spectral methods [6]. Each one uses, respectively, the eigenvectors of the following Laplacian
matrices from the matrix A′ = A(H ′):

L = E −A′ (3)
Lrw = E−1L (4)

Lsym = E−
1
2LE−

1
2 (5)

where E = (eij) is a n× n diagonal matrix such that eii = Σn
j=1a

′
ij for i = 1, . . . , n. Equation

(3) is said to be unnormalized, while the Equations (5) and (4) are said to be normalized.
Each algorithm presented in [6] uses a subset of the normalized eigenvectors of one of above

matrices which are obtained from a diagonalization method. However, the proposed method
considers a subset of eigenvectors such that their magnitudes are equal to the root square
of the corresponding eigenvalue. Since that the graph H is connected, the second smallest
eigenvalues of three matrices above are strictly positive [6], avoiding pathologies which involve
the zero vector.

Note that, for the set R1 we have the p = 2. Thus, we applied each spectral clustering
algorithm twice, searching from 2 to 3 clusters on R1. In all cases, the family with 3 clusters
reached the greatest Dunn’s index. Moreover, as expected, the families of clusters produced by
the algorithms were identical since the corresponding graph H ′ is very regular and at most of
its vertices have approximately the same degree.

The next example illustrates a generalization of the above idea to deal with fuzzy sets. To
this end, we consider the following family of fuzzy triangular numbers R2 = {ti}15

i=1 ⊂ F(R):

R2 =


t1 = (1; 2; 8), t2 = (3; 9; 10), t3 = (1; 5; 10),
t4 = (5; 9; 10), t5 = (6; 8; 10), t6 = (51; 57; 58),
t7 = (50; 54; 57), t8 = (54; 58; 59), t9 = (57; 58; 59),
t10 = (52; 57; 60), t11 = (104; 107; 108), t12 = (100; 104; 107),
t13 = (103; 103; 108), t14 = (100; 108; 110), t15 = (100; 101; 102)


Recall that the membership function of a fuzzy triangular number t = (a; b; c) is given by

ϕt(x) =


0, if x ≤ a
x−a
b−a , if a < x ≤ b
x−c
b−c , if b < x ≤ c
0, if x > c

.

Figure 1 shows the membership functions of fuzzy sets in R2 which are clearly separated into
three clusters or groups.

Following the same approach of the last example, we obtained the same 3 clusters on R2
for each one of three the spectral clustering under consideration. Figure 1 reveals that the
algorithms identified perfectly the all three clusters as desired.
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Figure 1: Fuzzy sets in R2 for each one of three cluster.

3. Simulations on Fisher’s Dataset

In this section we test the proposed clustering method in the well-known Fisher’s dataset [4].
This dataset is composed of 150 samples of Iris flower that are equally divided into 3 species
(setosa, virginica, and versicolor).

In order to use our method, we have to extend the metric D to deal with n-tuples of fuzzy sets.
Let F1, F2 ∈ F(R)n, where the symbol F(R)n denotes the set of n-tuples of fuzzy sets in F(R),
and let D be the metric given in Equation (1). We define the metric Dn : F(R)n×F(R)n → R
as

Dn(F1, F2) =

√√√√ n∑
i=1
D(F1(i), F2(i))2.

Note that, if F1, F2 ∈ Rn, i.e, if F1 and F2 are n-tuples of real numbers, then we have that
Dn(F1, F2) coincides to the usual Euclidean distance between the n-tuples F1 and F2.

Let F = {Fi : i = 1, . . . , 150}, where Fi ∈ Rn coresponds to the ith sample of Fisher’s
dataset. We obtain 3 clusters by applying the proposed clustering method to the distance
matrix D = (dij), where dij = D150(Fi, Fj) for i, j = 1 . . . , 150.

In general, clustering algorithms yield an indexes vector p such that the ith element of
dataset is associated to the cluster pi ∈ Nk = {1, . . . , k}, where k denotes the number of
resulting clusters. Thus, in order to compare different clustering approaches, we use the cluster
misclassification function dM : Nnk × Nnk → Z+ defined in [1].

We compare our methodology to the well-known k-means algorithm in the Fisher’s dataset,
with k = 3, by means of the metric dM . Let v be the desired indexes vector (which corresponds
to the three groups, i.e. clusters, of species of Iris flowers) and let p,q be the resulting indexes
vectors from the proposed algorithm and k-means algorithm, respectively.

In conclusion, the values dM (p,v) = 10 and dM (v,q) = 16 indicate that our method pro-
duced clusters that are more similar to the original groups than the ones produced using the
k-means algorithm.

4. Conclusion and Future Works

On the one hand, the results obtained on two examples above indicate that the proposed ap-
proach works well on data with high value of Dunn’s indices. In order to verify this hypothesis,
we intend to apply our method in other sets of general fuzzy sets, not only those with triangular



Fuzzy Spectral Clustering Algorithms 39

membership function, with more number of clusters. On the other hand, the preliminary result
on the Fisher’s dataset suggests the potential of our method in real clustering tasks.

Since our method yields group of fuzzy sets, it can apply for analysing and reduction of fuzzy
rule-based systems. The idea is to find conflicting or redundant rules by means of clustering
of both antecedents and consequences fuzzy sets. We will compare the performances of fuzzy
rule-based systems obtained before and after applying of reduction via our method.
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Abstract In standard Multidimensional Scaling (MDS) one is concerned with finding a low-dimensional
representation of a set of n objects, so that pairwise dissimilarities among the original objects
are represented as distances in the embedded space with minimum error. We propose an MDS
algorithm that simultaneously optimizes the distance error and the cluster membership discrepancy
between a given cluster structure in the original data and the resulting cluster structure in the
low-dimensional representation. We report on preliminary computational experience, which shows
that the algorithm is able to find MDS representations that preserve the original cluster structure
while incurring a relatively small increase in the distance error, as compared to standard MDS.

Keywords: Branch-and-Prune, Distance Geometry, Multidimensional Scaling

1. Introduction

Multidimensional scaling (MDS) is a set of techniques concerned with variants of the following
problem: given the information on pairwise dissimilarities between elements of a set of n objects,
find a low-dimensional representation of the given objects, while minimizing a loss function
that measures the error between the original dissimilarities and the distances resulting from
the low-dimensional embedding [3]. This low-dimensional embedding of the given objects is
usually referred to as an MDS representation.

Let us consider a set P of points in RN to which a clustering procedure (e.g., k-means) has
been applied. The application of a standard MDS procedure to P provides no guarantee that,
if the clustering procedure were also applied to the MDS representation, a cluster structure
similar to the one obtained for the original data would result.

Despite this fact, attempts at integrating MDS and clustering into a single technique are
not entirely absent from the MDS literature. Cluster Differences Scaling (CDS) is one such
technique [5]. Given pairwise distances between a set of objects, CDS assigns objects to clus-
ters and creates a low-dimensional representation for each cluster. Therefore, the resulting

∗Thanks to CAPES and CNPq for financial support
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representation includes as many points as the number of clusters. The distance error is mea-
sured over the cluster representations for pairs of points that are assigned to different clusters.
Another line of work relating clustering and MDS is the one described in [7]. There, an MDS
representation is determined with the property that a k-means partition of the embedded data
is identical to the optimal partition in the original space given by a so-called pairwise clustering
cost function. One of the advantages of such an approach is that, instead of carrying out an
expensive pairwise clustering cost procedure on the original data, one can apply a standard
k-means algorithm to the embedded data and recover precisely the same information.

Unlike these approaches, in which clusters are determined as part of the process, our approach
requires a cluster partition obtained a priori. More specifically, we assume that, in addition to
the pairwise dissimilarity information, cluster membership data is given as part of the input,
specifying to which cluster each point is assigned. The current availability of highly specialized
optimization algorithms for clustering (see, e.g., [2]) allows for instances to be solved with
good accuracy, even when the data involves a large number of entities and/or complex data
types. Thus, it is justified to argue for an MDS algorithm that preserves cluster partition
but does not enforce the use of a specific clustering method, unlike [5, 7]. By considering
the cluster partition structure as part of the input, the approach pursued in this paper can
be applied in conjunction with virtually any clustering algorithm, including ones that are not
based exclusively on dissimilarities. Given an appropriate cluster partition for the original data,
the question is whether or not there is a low-dimensional representation of the data, which
preserves the dissimilarities to an extent that makes it still possible to recover the original
cluster partition structure.

This presentation is organized as follows. In Section 2 we describe an existing combinatorial
algorithm for MDS and how it can be modified in order to take into account the preservation
of cluster membership in the resulting MDS representation. In Section 3 we discuss the results
of computational experiments carried out on a classic clustering dataset.

2. A Cluster-Partition Preserving MDS Algorithm

Let us consider a set V ⊂ RN of n points, for which pairwise Euclidean distances (to which
we shall refer as dissimilarities) δij are known. In [1] a Branch-and-Prune (BP) algorithm was
proposed for finding an MDS representation in R3 while minimizing a Stress function given by

S(x) =
n∑
i=1

n∑
j=1

(d(xi, xj)− δij)2 , (1)

where x = (x1, . . . , xn) is the resulting MDS representation and d(xi, xj) stands for the Eu-
clidean distance between points xi and xj .

Given a total order on the original points, the BP assigns standard positions for the first
3 points in such a way as to exactly match the dissimilarities among them. From the 4-th
point and on, the algorithm determines the possible coordinates of each point xi by exactly
matching distances and dissimilarities of xi with respect to the previous 3 points in the order.
It is possible to show that, with probability 1, there are two possible positions for each such
point [6].

This fact naturally leads to a combinatorial procedure, which is the basis of the tree-search
BP algorithm. Since the algorithm determines the placement of points in a sequential manner,
we shall say that a point has been mapped if its coordinates have already been determined.
Thus, MDS representations are available at the (n−2)-th level of the search tree, once all points
have been mapped. Moreover, since the algorithm does not enforce that all distances match
the corresponding dissimilarities, different MDS representations might have different values of
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the Stress function. An implicit enumeration scheme can then be applied based on the value
of the Stress function, with tree nodes that correspond to Stress values higher than that of the
best known MDS representation being removed from further investigation.

We next show how to extend this algorithm to incorporate cluster membership informa-
tion, assumming that a clustering procedure was applied to the original data and that such
information is available. First, we include among the input points a reference point for each
cluster. This reference point can be, for instance, a cluster centroid, or simply an original point
belonging to the cluster and preferably occupying a somewhat “central” position with respect
to other points in the cluster. The only requirement on the choice of a reference point y is that
the dissimilarities between y and all other points (including other reference ones) are known.

Thus, based on a total order on this augmented set of input points, we can apply the BP
algorithm with the caveat that nodes corresponding to MDS representations having a high
number of cluster-partition discrepancies (with respect to the original partition) are pruned.
A cluster-partition discrepancy can be detected in a node of the search tree whenever a point
that has already been mapped is closer (in the embedded space) to the mapped reference point
of a different cluster than to the mapped reference point of its own cluster. Note that, for this
kind of pruning to take place, it is necessary to have some reference points already mapped.
We propose to order the input points in such a way that points belonging to the same cluster
are grouped together, with the reference point of each cluster preceding the remaining points
of its cluster.

Algorithm 1 summarizes the procedure. In line 10 of Alg. 1, we refer to the property of
a node being prunable. A node s is said to be prunable if it has a larger Stress value (or
cluster-partition discrepancy) than that of the best known MDS representation.

Algorithm 1 Pseudocode of cluster-partition preserving BP algorithm.
Require: Pairwise dissimilarities δij between n points (i, j = 1, . . . , n).
Ensure: An MDS representation.

1: Establish total order on points, reference ones included;
2: T ← {r}, where r is the initial node, with positions for the first 3 points;
3: while (T 6= ∅) do
4: Select a node t ∈ T , T ← T \ {t};
5: for each (possible position of the first not yet mapped point in t) do
6: Create new node s, updated with newly placed point;
7: if (s is an MDS representation) then
8: Consider updating best known MDS representation;
9: else
10: if (s is not prunable) then
11: T ← T ∪ {s};
12: end if
13: end if
14: end for
15: end while

Among all solutions produced during the search, the algorithm will report, as the best
solution found, one with the smallest value of cluster misclassification, a concept that we
introduce in what follows. Let p, q ∈ Nnk , with Nk = {1, . . . , k}, be cluster index vectors, each
of which assigns a cluster index i (1 ≤ i ≤ k) to each point in V . In order to compare two
such point-cluster assignments, we must account for a possible permutation of cluster labels.
Thus, we define cluster misclassification as the function dM : Nnk × Nnk → Z+, such that
dM (p, q) = minσ∈Pk dH(σ(p), q), where Pk is the set of permutations of Nk, dH is the Hamming
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Standard BP [1] Partition-Preserving BP
k Stress Misclass. Discr. Stress Misclass. Discr.
3 9.8625e+002 2 2 1.9366e+003 0 0
5 8.3719e+002 2 8 6.9674e+003 0 0
8 1.0173e+003 12 5 3.0981e+004 0 2

Table 1: Comparison between the standard BP algorithm and the proposed cluster-partition
preserving BP algorithm.

distance, and σ(p) is an index vector obtained from p via the application of σ ∈ Pk (with
σ(p)i = σ(pi), for i = 1, . . . , n). Function dM is a metric that allows us to assess how dissimilar
the index vector p produced by a clustering procedure applied to the embedded data is with
respect to the original index vector q, obtained by clustering the original data.

3. Computational Experiments

In order to validate the proposed MDS algorithm we conducted a series of computational ex-
periments using the classical Fisher data set [4]. Prior to the application of the MDS algorithm,
duplicate points were removed and the data was clustered using a standard k-means procedure,
with the number k of clusters equal to 3, 5 and 8. We used as the reference point of each cluster
its centroid, defined as the average of the points belonging to the cluster.

To allow for pruning to take place since early levels of the search tree – and still focus on
producing MDS representations with small deviations from the given dissimilarities δij – we
attempted to minimize the Stress function given by (1), while using the following function as
pruning criterion:

σ(x) = max
i,j=1...,n

|d(xi, xj)− δij | . (2)

The first column of Table 1 displays the number of clusters used for clustering the original
data. The next three columns refer to: (i) the value of the Stress function corresponding to
the best MDS representation found by applying the original BP algorithm of [1], (ii) the value
of the cluster misclassification metric and (iii) the corresponding number of cluster-partition
discrepancies. The following three columns provide similar information concerning our cluster-
partition preserving BP algorithm. In both cases, the BP search was limited to a maximum of
5 · 106 nodes.

The results show that our algorithm was able to construct MDS representations with low
(in fact, zero) misclassification counts and low cluster-partition discrepancies, while incurring
a relatively small increase in the value of the Stress function.

It is important to remark that Table 1 shows a simultaneous decrease in misclassification
and discrepancy for the Partition-Preserving BP, for all values of k. On the other hand, the
Stress value for the Partition-Preserving BP is greater than that for the standard BP, for all
values of k. Since the search tree is pruned with respect to discrepancy, this scenario is to
be expected: discarding certain solutions that were taken into consideration by the Standard
BP search might lead to an increase in Stress. However, since both BP searches were limited
to exploring 5 million nodes, it is conceivable that the search carried out by the Partition-
Preserving BP could lead to a solution with better Stress value than that of the best solution
found by the Standard BP search.

As far as running time is concerned, the Partition-Preserving BP search has practically the
same performance as that of the Standard BP search, since we introduce a negligible amount of
extra computation in each node of the tree due to the discrepancy calculation. The computation
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of the cluster misclassification metric is currently carried out as a post-processing phase, applied
only to a set of elite solutions generated during the search.

While different orders of the points – as well as different reference points – may be used,
our preliminary experiments showed that the order suggested here provides a good compromise
between quality of the MDS representation and running time.
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Abstract In this paper we present a formulation for the generalized kissing number problem from a distance
geometry point of view. The formulation allows for to construct lower bounds for the maximal
number of non overlapping spheres of radius r that can touch a unit sphere the 3 dimensional
space. The solution is obtained by finding iteratively the intersection between 3 spheres and then
searching for the clique number of an attached representation graph. Besides the main idea, a
pseudo-code algorithm is included and charts of an example are presented. An extension of what
is presented here might be extended to approach the problem in higher dimensions.

Keywords: Kissing Number, Discretizable Distance Geometry, Graphs, Spherical Codes

1. Introduction

The kissing number problem is a classical geometric problem in which the goal is to find the
largest number KN(n) of equal nonoverlapping spheres in Rn that can touch another sphere
of the same radius. If we arrange coins in a table, it easy to see (and also to prove) that the
answer in R2 is exactly six, i.e. KN(2) = 6.
In three dimensions the kissing number problem is also called the thirteen spheres problem due
to a famous discussion between Isaac Newton and David Gregory in 1694. Newton believed
that KN(3) = 12 while Gregory thought that 13 might be possible

The most symmetrical configuration of 12 balls around another is achieved when the balls
are placed at positions corresponding to the vertices of a regular icosahedron concentric with
the central ball. However, these 12 outer balls do not kiss each other and may all be moved
freely. So perhaps a 13th ball would possibly fit in. If we look at the correspond packing of
non overlapping caps on the surface of the central sphere and divide the area of the central
sphere by the area of one spherical cap of angular radius α = π

6 , we may get an upper bound
for the kissing number in R3. In this case, KN(3) 6 14.99282 which somehow argue in favour
of Gregory. After some preliminary works (see [7] and references therein), the problem was
formally solved only in 1953 by Shütte van der Waerden [2] in behalf of Newton, KN(3) = 12.

For dimensions greater than 3 optimal solutions are known only in three cases:
KN(4) = 24 [4], KN(8) = 240 [5], KN(24) = 196.560 [6]. In each of them the center of
the spheres coincide with the shortest vectors of high symmetry lattices, namely, D4, E8 and
Leech lattices, respectively. For all other dimensions there are only upper and lower bounds on
KN(n). Good references on this subject can be found in [7].

∗The authors would like to thank the Brazilian research agencies FAPESP, CAPES and CNPq for their financial support.
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α

Figure 1: On the left, the perfect kissing number arrangements for n = 2. At the center, 12
spherical caps of angular radius π

6 . On the right, 12 equal balls placed on the vertices of a
icosahedron concentric with the central ball

Besides the geometric aspects, the battle for new records of KN(n) is also an interesting
problem in mathematical programming and several formulations have been proposed (see, for
instance [8]).

1.1 The Generalized Kissing Number Problem - GKNP

We can generalize the KNP by considering a different radius for the surrounding spheres. In
this case we are interested in the largest number GKN(n, r) of n−dimensional spheres of radius
r that can be placed around a central unit sphere in Rn, so that each of the surrounding spheres
touches the central one without overlapping.

This problem is equivalent to the problem of maximize the number of spherical caps packed
on the surface of a unit sphere, which is related to the design of spherical codes for signal
transmissions over a Gaussian Channel [9, 10].

In this paper we look to this problem from a discrete distance geometry point of view
and present a constructive method to obtain lower bounds on GKN(3, r) by finding the clique
number1 of an attached representation graph. The ideas introduced here can be directly applied
to the GKNP(2,r), as a particular case, and might be extended to approach the GKNP in Rn.
In the next section we summarize the Discretizable Distance Geometry Problem and in Section
3 we present our approach. The ideas introduced here might be extended to approach the
GKNP in Rn.

2. The Discretizable Distance Geometry Problem

The Discretizable Distance Geometry Problem (DDGP) is a subclass of the Distance Geometry
Problem (DGP), where the solution space can be discretized [14]. The interest of the DGP
resides in its possible applications (molecular conformation, wireless sensor networks, statics,
data visualization and robotics among others), as well as in the mathematical theory behind
the results [14].

The DGP can then be formally defined as the following question: given a weighted simple
undirected graph G = (V,E, d), is there a function x : V → RK such that ||xi − xj || =
dij ∀(i, j) ∈ E?

When G is a complete graph (all the distances are given), a unique three-dimensional struc-
ture can be determined by a linear time algorithm [12]. Otherwise, DGP is strongly NP-
complete when K = 1 and strongly NP-hard for general K > 1 [16].

1We remark that the clique number of a graph is the number of vertices of a maximal clique with largest number of vertices
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The DGP can be naturally formulated as a nonlinear global minimization problem, where
the objective function can be written as f(x1, . . . , xn) =

∑
(i,j)∈E(||xi− xj ||2− d2

ij)2. Assuming
that all the distances are correctly given, a set {x1, . . . , xn} ⊂ RK is a solution if and only if
f(x1, . . . , xn) = 0. Many algorithms have been proposed for the solution of the DGP, and most
of them are based on a search in a continuous space [15].

By exploring some rigidity properties of the graph G, the search space can be discretized
and a the DDGP problem come into the place. For this case and when the given distances are
precise, the algorithm Branch-and-Prune (BP) can be used to solve the DDGP [14].

The main idea behind of the discretization, and behind of the algorithm BP, is that the
intersection among K spheres in RK can produce at most two points under the hypothesis of
their centers are in a hyperplane but not in a (K − 2)-dimensional affine subspace. Consider
(K+ 1) points {ui}Ki=1 and v. If the coordinates for {ui}Ki=1 are known, as well as the distances
{d(ui, v)}Ki=1 then K spheres can be defined and their intersection provides the two possible
positions for the point v.

The definition of an ordering on a set of vertices satisfying such conditions suggests a recursive
search on a binary tree containing the potential coordinates for the vertices [14]. The binary tree
of possible solutions is explored starting from its top, where the first K points are positioned,
and by placing one vertex per time. At each step, two possible positions for the current vertex
v are computed, and two new branches are added to the tree. As a consequence, the size of the
binary tree can increase quite quickly, but the presence of additional distances (not employed
in the construction of the tree) can help in verifying the feasibility of the computed positions.
As soon as a position is found to be infeasible, the corresponding branch can be pruned and
the search can be backtracked.

3. The Kissing Number as a Distance Geometry Problem

Let c0 = (0, 0, 0) be the center of the central unit sphere s0. We wish to place a collection S of
3-dimensional spheres S = {s1, s2, · · · , sM} of radius r, centered at the points (c1, c2, · · · , cM )
respectively, such that ||ci|| = (1 + r) and ||ci − cj || ≥ 2r for all i 6= j, i, j = 1, 2, · · · ,M . The
goal in GKNP is to increase M is as much as possible.

Our approach starts by setting c1 = (0, 0, 1 + r) and then adding the spheres {s2, · · · , s6}
tangent to s0 and s1 (Figure 2). Then, new spheres will be included by solving the problem of
intersection among 2 existent spheres and s0. In each step, the method will design a kind of
“belt” around s0, going from up to down, as illustrated in Figure 2, where s0 is represented in
orange.

Figure 2: Belts designed using Algorithm 1 for the GKN(3, 1).

After designing all possible “belts” there will be many overlapping spheres which must be
eliminated in order to get the final solution. This elimination process will be done by searching
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for maximal cliques of a representation graph GM associated to the matrix M where:

mij =
{

0 if (i = j or ||ci − cj || < 2r)
1 if ||ci − cj || ≥ 2r

A lower bound for GKN(3, r) will be the clique number ω(G) of GM . In Algorithm 1 we
present a pseudo code for the algorithm which places the spheres around s0 and, in Figure 2,
we show the steps for a lower bound of the classical GKN(3, 1) = KN(3) = 12, which is, in this
case, equals to the exact solution.
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Algorithm 1 Algorithm to place spheres around c0. In this code f(x, y, z) represents a pro-
cedure to find the two solutions for the problem of intersection 3 tangent spheres in R3.
Require: Old = {c1} and Rec = {c2, c3, c4, c5, c6}.
Ensure: A set of centers in belts around central sphere.

1: r∗ ←− 4r
1 + r

√
1 + 2r;

2: test←− 0;
3: while (test = 0) do
4: New ←− ∅;
5: for all (ci, cj ∈ Rec such that 2r ≤ ‖ci − cj‖ ≤ r∗) do
6: Calculate S = {n1, n2} ←− f(c, ci, cj);
7: for (k = 1, 2) do
8: if (∃s ∈ Old such that ‖s−nk‖ < 2r) OR (∃s ∈ Rec∪New such that ‖s−nk‖ =

0) then
9: S ←− S \ {nk};
10: end if
11: end for
12: New ←− New ∪ S;
13: end for
14: Aux←− ∅;
15: while (New 6= ∅) do
16: J ←− ∅;
17: for all (ci ∈ Rec ∧ cj ∈ New such that ‖ci − cj‖ = 2r) do
18: Calculate S = {n1, n2} ←− f(c, ci, cj);
19: for (k = 1, 2) do
20: if (∃s ∈ Old such that ‖s−nk‖ < 2r) OR (∃s ∈ Rec∪New∪Aux such that
‖s− nk‖ = 0) then

21: S ←− S \ {nk};
22: end if
23: end for
24: J ←− J ∪ S;
25: end for
26: Aux←− Aux ∪New;
27: New ←− J ;
28: end while
29: Old←− Old ∪Rec;
30: if (Aux = ∅) then
31: test←− 1;
32: else
33: Rec←− Aux;
34: end if
35: end while
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Abstract The metric multidimensional scaling (MDS) originates from a set of techniques for analyzing prox-
imity of data, which is obtained through the judgment of participants who concomitantly compare
several stimuli in various dimensions. In this work, we propose an approach to the problem of
multidimensional scaling using a Branch-and-Prune algorithm. Moreover, we will compare it with
the Principal Coordinates Analysis technique which is a classical approach for data compression
(or dimensionality reduction).
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1. Introduction

Multidimensional scaling (MDS) is a method that represents measurements of similarity (or
dissimilarity) among pairs of objects through distances between points of a low-dimensional
multidimensional space[2]. Multidimensional scaling is most often used to visualize data when
only their distances or dissimilarities are available. However, when the original data are avail-
able, multidimensional scaling can also be used as a dimension reduction method, by reduction
the data to a distance matrix, creating a new configuration of points [3].

The graphical display of the correlations provided by MDS enables the data analyst to
literally look at the data and visually exploit their structure. This often shows regularities that
remain hidden when studying arrays of numbers [2].

Pairwise Euclidean distances among n objects are given by the matrix (δij), i, j = 1, . . . , n.
A set of points in an embedding metric space is considered as an image of the objects set.
Usually, an m-dimensional vector space is used, and xi ∈ Rm, i = 1, ..., n, should be found
whose inter-point distances fit the given Euclidean distances. Images of the considered objects
can be found minimizing a fit criterion, e.g. the most frequently used least squares stress
function [6]:

S(x) =
n∑
i=1

n∑
j=1

ωij(d(xi, xj)− δij)2, (1)

∗bolsista de Doutorado CNPq - Processo 140239/2009-0
†Bolsista de Produtividade CNPq - Processo 309561/2009-4, Projeto Fapesp: 2010/06822-4
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d(xi, xj) =
( 3∑
k=1
|xik − xjk|p

) 1
p

, (2)

where x = (x1, . . . , xn), xi = (xi1, xi2, . . . , xim); d(xi, xj) denotes the distance between the
points xi and xj ; it is assumed that the weights are positive: wij > 0, i, j = 1, . . . , n.

One way of obtaining a representation in R3 for this data is to determine xi ∈ R3, i = 1, . . . , n,
using the classical multidimensional scaling. Classical multidimensional scaling, also known as
principal coordinates analysis (PCoA), takes a matrix of interpoint distances, and creates a
configuration of points. Ideally, those points can be constructed in two or three dimensions, and
the Euclidean distances between them approximately reproduce the original distance matrix.
Thus, scatter plot of the those points provides a visual representation of the original distances
[3].

In this study, we investigate an alternative approach for obtaining the points xi ∈ R3. This
approach consists of an Branch-and-Prune type algorithm [4], allowing greater accuracy in
comparison with the technique of principal coordinates analysis.

2. Mathematical Formulation

Consider a sequence of n points with Cartesian coordinates given by x1, . . . , xn ∈ R3. The
Euclidean distance between points i − 1 and i is denoted by ri for all i = 2, . . . , n, the angle
θi ∈ [0, π] is formed by the segments joining points i − 2, i − 1 and i, for all i = 3, . . . , n, and
the torsion angle ωi ∈ [0, 2π] is formed by the normals through the planes defined by the points
i− 3, i− 2, i− 1 and i− 2, i− 1, i, for all i = 4, . . . , n.

Once ri, θi and ωi are known, it is possible to fix the first three points according to determined
sequence. The fourth point is determined by the torsion angle ω4, r2, r3 and θ3, the fifth point,
in turn, is determined by torsion angles ω4 and ω5, and so on. The Cartesian coordinates
xi = (xi1, xi2, xi3), for each point i, can be obtained using the following relations [5]:


xi1
xi2
xi3
1

 = B1B2 . . . Bi


0
0
0
1

∀i = 1, . . . , n, (3)

where B1 is the identity matrix of dimension 4,

B2 =


−1 0 0 −r2
0 1 0 0
0 0 −1 0
0 0 0 1

 , (4)

B3 =


− cos θ3 − sin θ3 0 −r3 cos θ3
sin θ3 − cos θ3 0 r3 sin θ3

0 0 1 0
0 0 0 1

 (5)

and
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Bi =


− cos θi − sin θi 0 −ri cos θi

sin θi cosωi − cos θi cosωi − sinωi ri sin θi cosωi
sin θi sinωi − cos θi sinωi cosωi ri sin θi sinωi

0 0 0 1

 , (6)

for i = 4, . . . , n.
Given the distances r2, r3 and the angle θ3, it is possible to compute the torsion matrices B2

and B3 to determine the first three points:

x1 =

 0
0
0

 ,
x2 =

 −r2
0
0

 and

x3 =

 r3 cos θ3 − r2
r3 sin θ3

0

 .
The sin of the torsion angle ω4 can have only two possible values: sinω4 = ±

√
1− (cosω4)2

[4]. Consequently, we obtain only two possible positions x4 and x′4 for the fourth point:

x4 =

 −r2 + r3 cos θ3 − r4 cos θ3 cos θ4 + r4 sin θ3 sin θ4 cosω4
r3 sin θ3 − r4 sin θ3 cos θ4 − r4 cos θ3 sin θ4 cosω4

−r4 sin θ4
√

1− (cosω4)2

 ,

x
′
4 =

 −r2 + r3 cos θ3 − r4 cos θ3 cos θ4 + r4 sin θ3 sin θ4 cosω4
r3 sin θ3 − r4 sin θ3 cos θ4 − r4 cos θ3 sin θ4 cosω4

r4 sin θ4
√

1− (cosω4)2

 .
In the metric multidimensional scaling problem, instead of R3 points, the n points are in

Rm. It is possible do define any order among these points such that the triangle inequality
is strictly satisfied: ∀i ∈ 2, . . . , n− 1, δi−1,i+1 < δi−1,i + δi,i+1. However, in R3, we obtain
a representation of n points which maintains the same distances given in Rm between points
i − 1 and i, for i = 2, . . . , n, and also between points i − 2 and i, for i = 3, . . . , n [1]. With
this R3 representation, and using the known distances among points on Rm, we apply the
Branch-and-Prune algorithm for the Cartesian coordinates to project the points on R3.

3. The Branch-and-Prune Algorithm

In this section, we shall present a Branch-and-Prune algorithm designed for solving the consid-
ered problem. The approach is very simple and mimics the structure of the problem closely: at
each step, we can place the ith point in two possible positions xi and x

′
i [4]. We, then, branch

the search and prune away the infeasible branches. More precisely, each of these possible posi-
tions must satisfy, for all pairs of preceding distances dij , |‖xi − xj‖ − dij | ≤ ε, where ε > 0 is
a given tolerance. There are four possible outcomes:

1. xi and x
′
i are feasible: in this case we store both positions and exploit both branches in

a depth-first fashion;
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2. only xi is feasible: we only store the feasible position xi and prune the infeasible branch
x
′
i;

3. only x′i is feasible: we only store the feasible position x′i and prune the infeasible branch
xi;

4. neither position is feasible: we prune both branches and backtrack the search.

In the original approach of the Branch-and-Prune algorithm pruning is performed based
upon computational errors, since the data are from the same space in which the structure must
be built. The pruning strategy for MDS is based on the Dijkstra’s algorithm. In this case, only
the best results obtained thus far are used, ignoring, but not discarding, the remaining ones,
since, in another further step, they can become the best results obtained that far. The pruning
strategy was modified because we can work with data that are in different spaces in which the
structure must be built.

4. Computational Results

In this section, we compare the Branch-and-Prune algorithm for MDS as the principal coor-
dinates analysis technique. The first method minimizes stress function (1) and second one
minimizes the function strain, both generate approximate solutions. The errors

Max Norm = max
1≤i≤n

n∑
j=1
‖δij − dij‖

and

2-Norm =

 n∑
i=1

n∑
j=1

(δij − dij)2

2

are used in the presentation of the results. The algorithm was implemented in Matlab2010,
in a processor Intel Core 2 duo 2.66GHz and operating system MAC OSX.

Table 1: Comparison between the two approaches. 10 points in R4.

Norms Algorithm Test 1 Test 2 Test 3 Test 4 Test 5

Max Norm PCoA 2.4447e+001 2.4549e+001 1.2968e+001 2.4845e+001 1.8924e+001
BP 6.3943e+001 6.3591e+001 4.8128e+001 6.8481e+001 3.3440e+001

2-Norm PCoA 5.6808e+001 5.5648e+001 3.3469e+001 4.9149e+001 3.9135e+001
BP 1.0944e+002 1.1.95e+002 8.5909e+001 1.2072e+002 4.8618e+001

Table 1 presents an 10 points instance in R4. As we can see, the clear advantage that the
principal coordinates analysis algorithm has over the Branch-and-Prune algorithm in the two
tested norms.

In Tables 2 and 3, the tests are performed for 50 points in Euclidean space with dimensions
30 and 50, respectively. It can be obsereved that the branch-and-prune approcah performs
better as the number of points increases.
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Table 2: Comparison between the two approaches. 50 points in R30.

Norms Algorithm Test 1 Test 2 Test 3 Test 4 Test 5

Max Norm PCoA 7.3033e+002 7.1910e+002 6.7215e+002 8.3959e+002 6.9022e+002
BP 7.4140e+002 7.6529e+002 7.3575e+002 7.1736e+002 7.5809e+002

2-Norm PCoA 1.9101e+004 1.8804e+004 1.8232e+004 1.9057e+004 1.8871e+004
BP 6.7788e+003 7.4840e+003 6.2412e+003 6.4460e+003 6.7704e+003

Table 3: Comparison between the two approaches. 50 points in R50.

Norms Algorithm Test 1 Test 2 Test 3 Test 4 Test 5

Max Norm PCoA 1.1228e+003 1.1568e+003 1.1757e+003 1.1305e+003 1.0819e+003
BP 2.3067e+001 1.1817e+003 1.1257e+003 1.2390e+003 1.1842e+003

2-Norm PCoA 3.3441e+004 3.4091e+004 3.3082e+004 3.3131e+004 3.2803e+004
BP 1.1755e+004 1.1717e+004 1.0973e+004 1.1312e+004 1.0866e+004

5. Conclusion

The proposed algorithm has been tested with data generated randomly. It is well known that
the principal coordinates analysis algorithm accumulates errors as the source dimension. In
comparison with the principal coordinates analysis algorithm, the branch-and-prune algorithm
for metric multidimensional scaling accumulates fewer errors increase as the amount of data
and size data source. Which confirmed that the efficiency of branch-and-prune algorithm for
metric multidimensional scaling is better than the efficiency of principal coordinates analysis.
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Abstract The sensor location problem (SLP) in a wireless sensor network consists in estimating the position
or sensors geographic coordinates from (1) a subset of all pair-wise distances between sensors
(often affected by noise) and (2) the positions previously known of some of them. In this paper, we
propose a heuristic for the SLP. Experimental results illustrate the effectiveness of the algorithm
on four instances of Niewiadomska-Szynkiewicz and Marks (2009) [6].
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1. Introduction

Let X = {1, 2, . . . , n} be a set of sensors, A = {1, 2, . . . ,m} be a set of anchors with known
locations {a1,a2, . . . ,am} : ai ∈ Rk, dij : i, j ∈ X, i 6= j and eik : i ∈ X, k ∈ A be
distances between two sensors and between sensors and anchors, respectively. The sensor
location problem consists in finding location for the sensors in X, say, {x1,x2, . . . ,xn} : xi ∈
Rk, such that

‖xi − xj‖22 = d2
ij ∀ i, j ∈ X, i 6= j, (1)

‖xi − ak‖22 = e2
ik ∀ i ∈ X, k ∈ A. (2)

Since this polynomial system may be inconsistent if the distances dij or eik have errors or noise,
the sensor location problem can be formulated as a global optimization problem of finding the
minimizer {x1,x2, . . . ,xn} of∑

i,j∈X,i 6=j
|‖xi − xj‖22 − d2

ij |+
∑

i∈X,k∈A
|‖xi − ak‖22 − e2

ik|. (3)

If the minimum of objective function (3) is zero for {x1,x2, . . . ,xn}, then the constraints in
Equations (1) and (2) are also satisfied, and thus the formulations are equivalent. On the other
hand, second formulation is relaxed in the sense that it allows approximate solutions while
quantifying the approximation error.

The most frequently used approach to solve the sensor location problem is based on Semidef-
inite Programming (SDP) or Second-Order Conic Programming (SOCP) relaxations. In [1, 4],
the authors show that if the optimal solution is unique and noise is additive and multiplicative,
then the SDP is able to find the solution. In [7], further SDP relaxations have been proposed
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to reduce the dimension of the SDP relaxations, both in variables and constraints, while in
[2] the author proposes an heuristic multistage approach to solve the problem formulated as a
box-constrained optimization problem.

The remainder of this paper is organized as follows. In Sections 2 and 3 the algorithm is
described and related computational results are discussed, respectively. Finally, concluding
remarks are made in Section 4.

2. Heuristic for the sensor location problem

At a glance, the proposed heuristic is an iterative procedure that determines the location of
one sensor at a time. We process the sensors with unknown location in decreasing order of
neighbors with known position, be them anchors or sensors whose location were determined
in the previous iterations. Having selected a sensor i ∈ X, xi is determined via trilateration
first, if possible, falling back to circles intersection if two reference neighbors are available, and
then to a neighbor’s radius. Trilateration determines the position of a given sensor based on
distances to three reference nodes whose locations are known. However, at least two problems
may arise when relying on trilateration alone: (1) we cannot ignore the possible existence
of noise in the distance labels; and (2) there might exist sensors for which no three reference
nodes exist at all. Under such circumstances, we may adopt a tolerance parameter to accept the
resulting location. For those sensors with only two neighbors with known position, we employ
circles intersection. Knowing that it results in two distinct positions, an extra step is required
to decide which one should be accepted as the true location of the sensor. Finally, for sensors
with just one reference neighbor, we must rely on the circumference around such a neighbor,
i.e., the neighbor’s radius alone. To improve the resulting locations even further, the heuristic
applies the path-relinking intensification strategy ([3]). The basic element of path-relinking is
the construction of an elite set of top and diverse solutions (with respect to Equation 3).

Before we detail the algorithm described in Figure 1, let us first introduce its input param-
eters: X: set of sensors; A: set of anchors; inf : network’s lower bound; sup: network’s upper
bound; d: distances between sensors; e: distances between sensors and anchors; f : function
that returns the average error in node distances; ar: radio reach; nf : noise factor; ne: number
of solutions in the elite-set; t: error lower bound, i.e., errors less than or equal to t are consid-
ered zero; ft: tolerance with respect to noise; ftmin: tolerance with respect to the network
area; maxI: maximum tries with the same error tolerance.

The heuristic is called multi-start, that is, it repeats the instructions in lines 1–30 until a
stopping condition is not reached, e.g., a given number of iterations, running time, solution
quality, etc. For each start, in line 2 a tolerance of any node’s error ε is defined as the maximum
between (1) the network’s coverage divided by ftmin and (2) the noise divided by ft. We let T
be the set of nodes whose position is already determined and S be the elite-set, both initialized
with the empty set in line 3. For convenience, in line 2 we also set s as the input data to
the problem, and then build a list P of nodes with unknown location — those that are to be
located —, sorted in decreasing order of neighbors with known location.

In the inner loop spanning lines 4–20, we try to determine the location of any sensor in
P by trilateration (line 5), if unsuccessful then by circles intersection (line 6), and finally by
neighbor’s radius (line 7) if still unsuccessful. If, on the one hand, a node’s position, say xpn,
is successfully determined, we update the error associated with each neighbor of pn (line 17),
update T by adding sensor pn to the set, and update P (line 18). On the other hand, if there
is no node whose location can be deducted (line 8), we increase the number i of iterations
without success (line 9) and repeat the inner loop, since our implementation of trilateration,
circles intersection, and neighbor radius are randomized and can yield different outcomes in
each run. However, if no solution can be found after i = maxI iterations (line 10), we increase
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Algorithm LocRSSF (X,A, low, up, d, e, f, r, nf, ec, t, nc, ft, ftmin,maxI)
1 while (stopping condition not reached) do
2 s := {X,A, d, e}; P :=BuildPending(s); ε := max(((up− low)/ftmin), (nf/ft));
3 i := 0; T := ∅; S := ∅; nrr := false;
4 while (|P | > 0) do
5 pn :=TryTrilateration(s, P, t, ε, nc)
6 if (pn = null) then pn := Try2CircleInt(s, P, rr, nf, t, ε, nc);
7 if (pn = null) then pn := TryNeighborRadius(s, P, t, ε, nc, nrr);
8 if (pn = null) then
9 i := i+ 1;
10 if (i ≥ maxI) then
11 if (nf > 0 and ε < nf) then

{ ε := ε+ nf/ft; i := 0; }
12 else { nrr := true; ε := ε ∗ 10; }
13 endif
14 else
15 i := 0;
16 if (nrr) then { nrr := false; ε := ε/10; }
17 for each neighbor n already positioned of pn do

n.e := ComputeNodeError(n, s, n.x, n.y, nf);
18 T := T ∪ {pn}; P := BuildPending(s);
19 endif
20 endwhile
21 s.e := f(s);
22 if (|S| < ec and NewSolution(s, S)) then S.InsertInOrder(s);
23 else
24 if (s.e < S[1].e) then { S.InsertAtHead(s); S := S \ {MostSimilar(s)}; }
25 else
26 i := Random(|S|); s′ := PathRelinking(.., s, S[i], t);
27 if (s′.e > S[|S|].e and SolutionIsDifferent(s′, S)) then

{ S.InsertInOrder(s′); S := S \ {MostSimilar(s′)}; }
28 endif
29 endif
30 endwhile;
31 return (S[1]);
end LocRSSF

Figure 1: WSNL algorithm.

the error tolerance in lines 11–12: for instances with noise, we increment ε with nf/ft (line
11), whereas for instances without noise we simply increase it ten times (line 12), also relaxing
the subsequent calls to neighbor’s radius back.

When a solution is built, or equivalently, when the set of sensors whose position is unknown
is empty, we consider adding it to the elite-set S (lines 22–29) that will feed the path-relinking
heuristic (line 26). In this process, if the elite-set is full but the current solution is attractive
(i.e., different from those already in S), it then enters S replacing a solution in S worse than
the current one and most similar to the current one (line 27). Otherwise, if the elite-set is not
full, the current solution is inserted, in increasing order of error, into S in line 22. Moreover, if
the solution is not the best among those already in S, the path-relinking procedure is executed.
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Otherwise, it is inserted at head of S, replacing a solution most similar to it (line 24). Given two
solutions K1 and K2 such that the error of of K1 is smaller than the error of K2, path-relinking
iteratively transforms K1 into K2 as follows: for each iteration, an "unmarked" sensor of K2 is
randomly selected, "marked", and its position is copied into K1. At the end of each iteration,
we evaluate the error in the updated K1, saving the best solution among all iterations. At the
end of the procedure, we save this best solution into S. When finished, the algorithm returns
the best solution in the elite-set as the ideal solution to the problem.

3. Experimental results

In this section, we report the experimental results comparing our heuristic with the four algo-
rithms introduced by Niewiadomska-Szynkiewicz and Marks in 2009 [6] for the WSNL problem:
Semidefinite programming (SDP), Simulated Annealing (SA), Trilateration with Simulated
Annealing (TSA), and Trilateration with Genetic Algorithm (TGA). Among the five test in-
stances used by Niewiadomska-Szynkiewicz and Marks, we selected four: evenly, unevenlyA,
unevenlyB, and unevenlyC. The instances have 200 sensors, 20 anchors, a radio range (rr)
equals to 0.18 and a noise factor equals to 0.1. While the instance evenly has sensors uniformly
distributed, the instances unevenlyA, B and C have sensors concentraded in some place, with
unevenlyC having anchors also concentrated.

All experiments were run on a 2 GHz Core 2 Duo CPU with 2 GBytes memory, running
under Linux. The algorithm was implemented in C++ and compiled with GCC version 4.3.3.
For each test instance, we made 100 independent runs of the algorithm, using as random-
number generator an implementation of the Mersenne Twister algorithm performed by [5].
After a parameter tuning phase, we set the input parameters as follows: stopping criteria
= 20 iterations, ne = 10, t = 0.001, ft = 10, ftmin = 10, and maxI = 10. Besides this,
we adopted as quality measure of the solutions the error metric ε used by Niewiadomska-
Szynkiewicz and Marks in [6] and its corresponding standard deviation (s.d.), as well as the
average running times of the algorithms in seconds as performance measure. Although the
average running times coming from our heuristic are considerably higher than all of other
algorithm’s, once that it generates multiple greedy randomized solutions while also executing
path-relinking in between; Table 1 shows that, except for the instance evenly, the quality of
our results was always better than those presented in [6]. For example, while the best error
found by Niewiadomska-Szynkiewicz and Marks’s algorithms (in this case, the TGA method)
was 133.78% on instance unevenlyC, our heuristic achieved 3.74%. Therefore, contradicting
the authors’ statement described in [6]: "As a final result, we can say that it is not suggested to
apply distance-based location methods to networks with unevenly distributed non-anchor and
anchor nodes". Representing through a line segment the error between the real and estimated
position of the sensors given by the algorithms, Figures 2 and 3 illustrate in more details
the differences among positions calculated by our heuristic on instance unevenlyC, and those
generated by the algorithms of Niewiadomska-Szynkiewicz and Marks (2009). While the first
one determines with high precision the positions of sensors, the others do not.

Table 1: Summary of results for the four algs. of Niewiadomska-Szynkiewicz and Marks (2009)
and our heuristic (Alg) on four instances: evenly, unevenlyA, B, and C [6]. Times are given in
seconds and errors in percentage.

Instance ε SDP t SDP ε SA t SA ε TSA t TSA ε TGA t TGA ε Alg s.d.(ε Alg) t Alg
evenly 0.18 6.95 2.76 3.04 0.13 0.46 3.80 2.85 0.27 0.060 13.13
unevenlyA 174.91 5.51 233.89 2.85 1.78 0.44 20.61 2.34 1.21 0.548 24.41
unevenlyB 330.56 6.25 293.01 3.06 1.81 0.47 56.06 2.90 0.65 0.209 18.47
unevenlyC 434.83 8.95 446.13 3.84 433.09 0.61 133.78 3.46 3.74 2.934 27.97
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Figure 2: Positions (star notation) of sensors
determined by the SDP, SA, TSA and TGA
algorithms on unevenlyC instance

Figure 3: Positions (star notation) of sensors
determined by the heuristic on unevenlyC
instance.

4. Concluding remarks

In this paper, we propose an algorithm for sensor location problem. We have shown the results
of applying this heuristic to four instances introduced by Niewiadomska-Szynkiewicz and Marks
in 2009 [6]. The promising results shown here, indicate that it is appropriate for solving sensor
location problem.

Acknowledgment

The research was partially supported by the Brazilian National Council for Scientific and
Technological Development (CNPq), the Foundation for Support of Research of the State of
Minas Gerais, Brazil (FAPEMIG), Coordination for the Improvement of Higher Education
Personnel, Brazil (CAPES), AT&T Labs Research in Florham Park, NJ, USA, and Foundation
for the Support of Development of the Federal University of Pernambuco, Brazil (FADE).

References

[1] Pratik Biswas, Kim-Chuan Toh, and Yinyu Ye. A distributed SDP approach for large-scale noisy anchor-free
graph realization with applications to molecular conformation. SIAM J. Sci. Comput., 30(3):1251–1277,
2008.

[2] A. Cassioli. Solving the sensor network localization problem using an heuristic multistage approach.
Optimization Online, 2009.

[3] F. Glover, M. Laguna, and R. Martí. Fundamentals of scatter search and path relinking. Control and
Cybernetics, 39:653–684, 2000.

[4] T.C. Liang, T.C. Wang, and Y. Ye. A gradient search method to round the semidenite programming
relaxation solution for ad hoc wireless sensor network localization. Technical Report SOL 2004-2, Dep. of
Management Science and Engineering, Stanford University, California, USA, 2004.

[5] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Modeling and Computer Simulation, 8:3–30, 1998.



64 Júlio C. Alves, Ricardo M. A. Silva, Geraldo R. Mateus, and Mauricio G.C. Resende

[6] Ewa Niewiadomska-Szynkiewicz and Michał Marks. Optimization schemes for wireless sensor network
localization. International Journal of Applied Mathematics and Computer Science, 19(2):291–302, 2009.

[7] Z. Wang, S. Zheng, Y. Ye, and S. Boyd. Further Relaxations of the Semidefinite Programming Approach
to Sensor Network Localization. SIAM Journal on Optimization, 19(2):655–673, 2008.



DGA 2013, pp. 65 – 69.

Adaptive Branching in iBP with Clifford Algebra

Rafael Alves,1 Andrea Cassioli,2 Antonio Mucherino,3 Carlile Lavor,1 and Leo Liberti 2

1IMECC-UNICAMP, Campinas-SP, Brazil. rafaelsoalves@uol.com.br,clavor@ime.unicamp.br

2LIX, École Polytechnique, Palaiseau, France. cassioli@lix.polytechnique.fr,liberti@lix.polytechnique.fr

3IRISA, University of Rennes 1, Rennes, France. antonio.mucherino@irisa.fr

Abstract We consider the interval Discretizable Molecular Distance Geometry Problem (iDMDGP). This
is a subclass of instances of the Distance Geometry that can be discretized; they are related
to biological molecules and can contain imprecise measurements of the available distances. The
interval branch-and-prune (iBP) is an algorithm for the iDMDGP. In this short paper, we integrate
iBP with Clifford algebra, with the aim of improving the branching phase of the algorithm, by
making it adaptive.

Keywords: molecular conformations, distance geometry, branch-and-prune, Clifford algebra

1. Introduction

Experiments of Nuclear Magnetic Resonance (NMR) are able to identify a subset of distances
between pairs of atoms of a given protein. This information, together with some additional
information on the chemical structure of the protein, can be exploited for finding the possible
three-dimensional conformations for the molecule. This problem is known as the interval
Molecular Distance Geometry Problem (iMDGP) [3].

In this context, we are working on a subclass of iMDGPs that can be discretized. In other
words, we consider all instances of this problem for which the search domain can be reduced
to a tree, whose nodes at level j represent all possible Cartesian coordinates for the jth atom
of the molecule. We say that such instances belong to the class of the interval Discretizable
Molecular Distance Geometry Problem (iDMDGP) [1].

The discretization allows for employing an interval Branch & Prune (iBP) algorithm for
the solution of iDMDGPs [1]. The idea is to explore the search tree recursively and to verify,
as soon as they are generated, the feasibility of the computed atomic positions. Infeasible
positions are immediately pruned, so that the search can be focused on the feasible parts of
the tree. On each layer of the tree, a finite number of possible Cartesian coordinates for the
current atom are computed by intersecting three Euclidean objects in the three-dimensional
space. Two of such objects always consist of spheres, whereas the third one may be either a
sphere or a spherical shell, depending on the fact the available distance is precise or represented
by an interval, respectively.

When the three Euclidean objects are three spheres, their intersection, in our assumptions,
always gives two disjoint points in R3, with probability one (the set of DMDGP instances for
which this fails has zero Lebesgue measure in the set of all possible DMDGP instances; many
of our statements hold with probability one). However, when one of the three objects is a
spherical shell, this intersection gives two curves in the three-dimensional space. A curve is
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a continuous object, and therefore, in order to discretize it, it was proposed in [1] to take a
certain predefined number D of points from such curves, and to include a new branch in the
tree for each new generated point.

Computational experiments, reported in some previous publications [4, 4–1], showed that
the solutions to iDMDGPs can be strongly influenced by the choice of D. If D is too small,
only infeasible branches may be generated, so that the whole tree is pruned and no solutions
can be found. On the other hand, if D is too large, the consequent combinatorial explosion
might make the experiments too computationally expensive. Finding a trade-off D value is not
an easy task in general.

This work presents a strategy for an adaptive branching during the execution of the iBP
algorithm, which is based on the so-called Clifford algebra [3, 7]. The main idea is to generate
branches that comply with the pruning distances, i.e. a minimal number of branches are kept
in the tree, while the tree width can be controlled.

In Section 2, we shortly describe how to extend the iBP algorithm by implementing a strategy
based on Clifford algebra. Section 5 shows some preliminary computational experiments.

2. Extending iBP with Clifford algebra

The Clifford algebra Cl3 over the real numbers is a 8-dimensional space with basis elements
{1, e1, e2, e3, e12, e13, e23, e123} representing scalars, vectors, bivectors and trivectors. The bivec-
tors and trivectors are obtained by the geometric product, the main product in a Clifford algebra.
This product is represented by the juxtaposition of the elements, and its rules for basis vectors
are shown in Equations (1) and (2). Other two products can be derived from the geometric
product: the outer product “∧” and the contractions, left “c” and right “b”. For vectors, the
contractions are equivalent to the scalar product in R3 “·”. Some relations among these prod-
ucts are shown in Equations (3) and (4) below. The geometric product between two vectors
is the sum of the scalar and the exterior products between them. In general, the geometric
product between a vector and an arbitrary element of Cl3, called a multivector, is the sum of
the left contraction and the exterior product.

e2
i = 1, (1)

eiej = −ejei, (2)
uv = u · v + u ∧ v, (3)
uB = ucB + u ∧B. (4)

In Equations (3) and (4), u and v are vectors and B is a multivector of Cl3.
With the addition of two vectors to the R3 basis (e∞ and e0), it is possible to construct a

model of geometry that allows us to handle with several basic geometric entities in a simple
way. We refer to the Clifford algebra associated to this model as the Conformal Geometric
Algebra (CGA) [3]. The basis elements for the conformal space are {e1, e2, e3, e∞, e0}, where
e∞ represents a point at infinity and e0 represents the origin of R3 in the conformal space.

In the CGA, basic geometric entities such as points, spheres, circles, lines and planes are
represented in a simple way, and their intersections are performed intuitively. The outer product
is used to compute intersections or to construct objects from points. The contractions can also
be used for intersections, and are often used to compute orthogonal projections, distances and
angles. Our approach is based on the geometric interpretation of the iDMDGP. A sphere is
represented by Eq. (5), while the circle can be defined simply as a two sphere intersection, Eq.
(6). Another important element is called a Point Pair, which is the result of a three sphere
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intersection, Eq. (7). These elements are the most important ones in our approach:

S = X − 1
2r

2e∞, (5)

C = S1 ∧ S2, (6)
Pp = S1 ∧ S2 ∧ S3. (7)

In Eq. (5), r is the sphere radius and X = x+ 1
2x

2e∞ + e0 is the projection of a point x ∈ R3

in the conformal space.
The basic idea behind the proposed strategy is the following. Every time the current atom

has one reference distance that is represented by an interval, two spheres Si−1 and Si−2, related
respectively to the atomic positions xi−1 and xi−2, are intersected with the spherical shell S′i−3,
related to the atomic position xi−3 such that the distance di−3,i is an interval. Due to the
discretization assumptions, this intersection produces up to two disjoint curves c′i−3 and c′′i−3 in
the three-dimensional space. These two curves belong to the circle C obtained by intersecting
the two spheres Si−1 and Si−2 (Figure 1). In symbols, c′i−3, c

′′
i−3 ∈ C.

Figure 1: Intesection between two spheres and a spherical shell.

Let us suppose that there is an atom k that is already positioned, for which dk,i is a known
distance. This distance generates another spherical shell S′k, which can be intersected with the
circle C, by producing other two curves: c′k, c′′k ∈ C (Figure 3). The same intersection can be
computed for any other atom j for which dj,i is known. After all the intersections have been
computed, the remaining curves contain only feasible points. These curves can be described
by the rotation of its endpoints (Figures 2 and 3). In other words, if Ep is the set of all known
distances, and Ep(i) is the subset of Ep containing only the distances related to the atom i,
the feasible points on the circle C can be computed by the following formula:

F (i) =
⋂

j∈Ep(i)∪{i−3}

(
c′j ∪ c′′j

)
.

The set F (i) is a curve segment in Euclidean space. It only contains feasible points, i.e. points
that satisfy all the available distances for the current atom. As a consequence, for any relatively
small value for D, there is no risk of pruning all the feasible points in the pruning phase. In
some sense, D can be considered as the precision of the conformations that are going to be
included in iBP solution set.
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Figure 2: Intersection with a pruning dis-
tance d(i, k).

Figure 3: The curve c′′k is the only feasible
region.

name naa na l C-iBP iBP
hm30 4 18 28 4/13803 6/929
2jmy-s 5 26 42 3/5220 4/3902
2jmy-m 10 51 90 3/11172 6/140270
2kxa 23 117 206 3/1275 8/7942
2ppz 36 170 323 4/15618 6/43073
2jmy 15 77 134 3/19063 12/47681

Table 1: Computational results: for each instance we report D/#nodes.

3. Preliminary computational experiments

In this section, we summarize our preliminary experiments on the iBP algorithm with Clifford
algebra. We show that the number of discretization points that are necessary for finding at least
one feasible solution decreases when the new strategy based on Clifford algebra is employed.

Both algorithms are coded in C++ and share most of the code, which has been compiled
with the g++ compiler version 4.7 with optimization flags -O3 -DNDEBUG. The tests have been
performed on a laptop having an i3 Intel processor and running Linux.

Our instances contain real data from NMR experiments, that can be downloaded from the
Protein Data Bank [4, 8]. They have different sizes, and they are related to protein backbones
only [1]. For each instance, we report the number of aminoacids naa, the number of atoms na,
the order length l, i.e. the tree depth, the minimum number of discretization points to find at
least one solution D, and number of generated nodes #nodes. We refer to iBP with Clifford
algebra as C-iBP.

The results in Table 1 clearly show that the use of the Clifford algebra allows for a great
reduction of the branching factor to find feasible solutions.
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1. The discretizable molecular distance geometry problem

The molecular distance geometry problem (MDGP) consists in finding coordinates in a three-
dimensional space of a set of points {x1, x2, . . . , xn} for which some of the Euclidean distances
between them are known [4]. Let G = (V,E, d) be a simple weighted undirected graph where
each vertex in V corresponds to a point in R3, and the weight of an edge corresponds to the
distance d between the respective points. Formally, the MDGP can be defined as follows [12]:

Definition 1. (MDGP). Let G = (V,E, d) be a simple weighted undirected graph. The MDGP
is the problem of finding a function

x : V → R3

such that
∀(u, v) ∈ E, ||xu − xv|| = duv,

where xu = x(u) and xv = x(v).

The discretizable molecular distance geometry problem (DMDGP) is a subset of the MDGP,
but with two extra assumptions [12]:

Definition 2. (DMDGP). Let G = (V,E, d) be a simple weighted undirected graph associated
to an instance of the MDGP. Let us suppose that there is a total order relation on the vertices
of V . The DMDGP consists in all the instances of the MDGP satisfying the following two
assumptions:

1. E contains all cliques on quadruplets of consecutive vertices;

2. the following strict triangular inequality must hold:

∀v ∈ {1, . . . , n− 2}, dv,v+2 < dv,v+1 + dv+1,v+2,

where n is the number of vertices in V .
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The reasons why these assumptions are useful and realistic is outside of the scope of this
work, and is extensively addressed in [12] and [14], but they allow us to discretize the problem
in the following manner: suppose we have three points in R3, and the distances to a fourth
point. We can then construct three spheres, each one centered in one of the points and with a
radius of its distance to the fourth one. These three spheres have an intersection characterized
by two points (with probability 1, thanks to the assumptions above [14]): the two possibilities
for the fourth point. However, if we have additional information, we can decide whether one of
them is invalid or not. Repeating this process, we have at most 2n−3 ways to position n points
(up to rotation and translation).

The Branch & Prune (BP) is an algorithm proposed in [13] to solve the DMDGP by exploiting
this discretization. The BP was further developed [15] to use another characteristic of the
discretization, namely that when constructing a new point, the two possibilities are symmetric
in regard to the plane determined by the three previous points. This means we can construct
other realizations from an initial one by knowing just the different branches taken and then
applying reflections through the right planes.

2. Clifford algebra

Clifford algebras are a refinement of both the Hamilton quaternions and the extensive algebra of
Hermann Grassmann [3] condensed in one structure. Clifford himself called his work geometric
algebra [2], but the term most commonly used now is Clifford algebra. His work had a geometric
flavor, and was heavily explored by both mathematicians and physicists, including Élie Cartan
and Paul Dirac, usually in the context of differential geometry and quantum mechanics [5].

A revival of the use of real Clifford algebras for geometric purposes was spearheaded by
David Hestenes [10], and culminated in the modern geometric algebra and its operational
models of Euclidean geometry, including conformal geometric algebra (CGA) [9]. CGA allows
a rich representation of Euclidean motions in a coordinate-free manner, and the link between
distance geometry and conformal geometric algebra was already studied by Dress and Havel [6].

We try to follow the notation and the formulation introduced in [5], and recommend it as a
good introduction to the subject, but we give a summary of central Clifford algebra ideas used
in this work.

There are two main products which are used: the geometric (or Clifford) product, and
the outer (or wedge) product1. Both of them algebraically encode the idea of working with
oriented subspaces of a vector space, allowing a “multivector” representation of points, lines,
planes and hyperplanes. An interesting fact is that the geometric product allows the inverse of
some multivectors to be defined, and thus it permits the representation of orthogonal or even
conformal (in CGA) transformations using an object called versor.

A versor is the result of a multiplication of vectors using the geometric product, it is always
invertible and it is applied to another multivector by “sandwiching”, that is, if V is a versor
and A a multivector, we can apply the versor by calculating V AV −1. Versors also correctly
preserve its underlying geometric structure without need for adaptations, being then a suitable
basis for the representation of geometric computations.

Definition 3. (Conformal geometric algebra of the three-dimensional Euclidean space). The
conformal geometric algebra (CGA) of the three-dimensional Euclidean space is an extension
of R3 by means of two extra vectors e and ē, which square respectively to 1 and −1. However, it
is more convenient to use ∞ = ē− e and o = 1

2(ē+ e), both of which square to 0, and represent

1The geometric product of a and b is denoted by ab, and their outer product by a ∧ b.
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a point at infinity and a point at the origin, respectively. This permits a fully coordinate-free
representation of Euclidean geometry, a fact which will be exploited in our algorithm.

In CGA, versors encode all conformal transformations, including isometries and homotheties.
In fact, it is the smallest known model of Euclidean geometry which allows the full represen-
tation of Euclidean transformations as versors. For convenience, we introduce special names
to two kinds of versors: those which represent rotations (rotors), and those which represent
translations (translators).

Composition of rotors and translators is more efficient than that of rotation matrices in
up to 10 dimensions and uses less storage in up to 6 dimensions, a good evidence of the
appropriateness of using CGA for geometric computing. It is also simple to convert versors to
matrices, if the need arises [5].

3. BP with Clifford algebra

We assume that our instance is a molecule of n atoms for which we denote the bond lengths
di−1,i for i = 2, . . . , n, the bond angles θi−2,i for i = 3, . . . , n and the dihedral angles ωi−3,i for
i = 4, . . . , n.

The main idea of the BP with Clifford Algebra is to use rotors and translators to represent
the calculation of a point from its predecessors, instead of transformation matrices based on
homogeneous coordinates [12]. Since a combination of rotor and translator needs at most 8
coordinates to be represented, this represents a memory gain against the traditional 4 × 4
matrices.

Another advantage of using CGA to work on the DMDGP is to exploit the inherent symme-
tries in the problem, since reflection through a plane is a simple operation in CGA represented
by a reflection versor, cheapening considerably the cost of calculating alternative conformations.

An algorithm to calculate the two possible points from its predecessors is presented here as
Algorithm 2. It creates two rotors: one for the bond angle and one for the dihedral angle, and
apply them to a translator to generate F , an Euclidean transformation which takes xi−1 to xi.
Notice in the algorithm the particular way the rotors are constructed, which is reminiscent of
Euler’s formula and the polar forms of complex numbers or quaternions. The pruning phase is
implemented as in the original BP [14].

A computer implementation of this new version of the BP already exists for the GAViewer
software [5], but as the software was not made with efficiency needs in mind, it is only useful as a
visualization tool. A “production-ready” implementation using the software Gaigen [7] capable
of using data extracted from the Protein Data Bank is currently being written, and should be
complete in time for the DGA2013, along with a performance analysis and a comparison with
the existing implementations of the original BP [13].

Algorithm 1 Initial potential solution
procedure Initial potential solution(n, d, θ, ω)

solution ← {the three initial points}
i← 4
while i ≤ n do

5: Compute i-th point and add to solution
end while
return solution

end procedure
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Algorithm 2 Compute i-th point
procedure Algorithm I: Compute i-th point(xi−3, xi−2, xi−1, θ, ω, d)

Π ← xi−3 ∧ xi−2 ∧ xi−1 ∧∞;
R1 ← e

θ
2 ((Πxi−2∧xi−1)∧∞)∗ ; . Create the bond angle rotor

v ← xi−1 − xi−2;
5: ω′ ← ω − π

2 ;
R2 ← e

ω′
2 (xi−2∧xi−1∧∞)∗ ; . Create the dihedral angle rotor

T ← 1− d
2

v
||v||∞; . Create the translator

F ← R2R1 TR
−1
1 R−1

2 ; . Combine two rotors and a translator in one versor
xi ← F xi−1F

−1 . Apply it xi−1
10: x′i ← ΠxiΠ−1 . Reflect xi

return xi, x
′
i

end procedure

4. Conclusions and future work

This is one of the first practical applications of conformal geometric algebra in distance ge-
ometry and it shows its excellence in representing complex geometric operations in a simple
manner. The subsumption of both quaternions and homogeneous coordinates by CGA allows
it to clarify the notation and to better expound inherent geometric properties in problems.

We expect to see more developments in that regard in the future, as more accessible, efficient
and high-level implementations of geometric algebra appear, as it is suited for scientific com-
puting and is already being used in the fields of robotics, computer graphics, computer vision
and artificial neural networks [1] [5] [16].

An extension of this work to handle generalizations of the DMDGP is expected, as conformal
geometric algebra has a great richness in ways of creating and manipulating its objects. Another
possible line of work would be to try to apply CGA techniques to other problems involving
molecular symmetries and rotations, such as [8] and [11].
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Abstract The problem of obtaining information on position location can be solved by using time of arrival
and time difference of arrival based techniques. Throughout this paper, we compare both iterative
and non-iterative (closed-form) methods for surveillance purpose in airports. As iterative solutions,
we present four methods: Quasi-Newton, Taylor and two Genetic Algorithms. As non-iterative
solutions, four algorithms are considered. Three of them had to be adapted in order to obtain an
overdetermined system. The results show how the number of nodes influences accuracy, failure
rate and processing time.

Keywords: Multilateration, TOA, TDOA, Hyperbolic Positioning

1. Introduction

The goal of locating the coordinates of an aircraft can be achieved by measuring the range
between a point of interest and reference nodes1. Some of the techniques include calculating
angle of arrival (AOA), received signal strength intensity (RSSI), time of arrival (TOA) and
time difference of arrival (TDOA)[1]. The last two approaches will be addressed in this paper
and are considered the promising solution to the next generation surveillance (NextGen)[2][4].

The problem of estimating an object location in the airport area has received considerable
attention due to the importance of securing the constantly increasing global air traffic. In fact,
MLAT2 systems can be considered as the transition from Secondary Surveillance Radar (SSR)
systems to Automatic Dependent Surveillance - Broadcast (ADS-B) systems[2][3][5].

An overdetermined system are assumed during the simulations (i.e, the number of linear
equations are greater than the number of unknowns). In another words, it consists of more
than three reference nodes for TOA and TDOA based algorithms.

The performance of several MLAT algorithms are analysed in this paper under different
numbers of receivers. The goal was to observe how the process of increasing the number of
reference nodes affects the average error, failure rate and the processing time.

This paper is organized as follows. Section I discusses the geometry of a MLAT system.
Section II describes the methodology used in order to conduct this research. In Section III, the
results are presented and in Section IV, the conclusion are discussed.

1Reference nodes and receivers will be used interchangeably throughout the paper.
2Abbreviation of Multilateration: systems based on time difference of arrival (TDOA).
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2. Multilateration System and its Geometric Interpretation

In a Multilateration system, the signal transmitted by a source (e.g, a transponder) and received
by three or more ground based receiver sites is denominated time of arrival (TOA). Considering
a 2-dimensional Euclidean space, let Si = (xi, yi) be the reference node locations and ti the
respective arrival time, where i = 1, ..., N . The unknowns aircraft position and time of emission
(TOE) are given by Sa = (xa, ya) and te, respectively.

Assuming a Line of Sight scenario (LOS), the distance between Si and Sa can be represented
by (1), being c the speed of light.

c (ti − te) =
√

(xi − xa)2 + (yi − ya)2 (1)

If we consider that the emission occurs at time 0, the TOA based techniques will require
at least three equations (i.e, three reference nodes) for two unknowns (xa, ya)[11]. Figure 1-a
depicts an overdetermined system, where N > 3.

(a) Overdetermined system (TOA based) (b) Hyperbolas intersection (TDOA based)

Figure 1: Multilateration schemes

Notice that using only two receivers, e.g, S1 and S2, gives us two solutions, A and B, depicting
an ambiguity. Thus, it is necessary the use of at least another reference node, S3, in order to
determining A as the correct solution. The fourth node characterizes an overdetermined system.

Another approach for estimating an aircraft position is to calculate the difference in time
of arrival (TOA) between pairs of reference nodes. Hyperbolic positioning, or time difference
of arrival (TDOA), is a technique that consider the intersection of hyperbolas as the mobile
position[7][8]. The distance-difference to a source can be represented by (2).

c (ti − tj) =
√

(xi − xa)2 + (yi − ya)2 −
√

(xj − xa)2 + (yj − ya)2 (2)

The emission time is common for all the receivers, thus the equation above eliminates the
unknown te which is in accordance with our goal, since we are only interested in measuring the
arrival time range. The system is depicted in Figure 1-b3.

3Font: A Passive Localization Algorithm and Its Accuracy Analysis.[9]
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3. Performance Assessment and Experiments

3.1 Algorithms

Eight location estimation algorithms form the object of interest of this research. Four of them
are non-iterative methods4: Bancroft [11], Bucher[7], Bakhoum[10], Least Squares[12]. Among
these algorithms, only Bancroft[11] is based on TOA. The Least Squares method can optionally
be implemented as TOA or TDOA based[12]. All closed-form algorithms, except for the Least
Squares, required an adaptation to ensure an overdetermined approach.

As iterative methods, four solutions were considered. Two genetic algorithms based on
heuristic search were implemented, besides Taylor and Quasi-Newton methods [13][12][14][15].
All of these solutions are based on TDOA, except for one of the genetic algorithms.

3.2 Surveillance Area

Although, all the algorithms were implemented using the C++ programming language, to build
a simulation environment, we used Matlab. We were able to link our C++ code with Matlab
through an interface named MEX5.

The airport surface was assumed to be 1Km2 of surveillance area discretized in m2. The
reference nodes were placed arbitrarily in 16 fixed sites as shown in Figure 2. For each algorithm,

Figure 2: Position of the reference nodes

the simulation started with the number of 4 receivers (S1, S2, S3, S4), geometrically forming a
square. The other nodes were added up sequentially, according to its number. Sensors 1 to
8 were located outside of the surveillance area and Sensors 9 to 16 were located inside that
area. Since the errors associated to the hardware are unknown, we hypothetically assumed a
Gaussian error distribution associated to the TOA measurements, where µ = 0 and σ = 1,2,3.

3.3 Simulation

To obtain the three parameters analysed in this paper, all algorithms were submitted to estimate
500 random points in the surveillance area. This process were repeated 31 times6 for each
algorithm and every time a reference node were added up to the system. Therefore, for a
specific number of receivers, 15.500 points were estimated by each algorithm. The average
error were obtained by summing up the error and dividing it by the number of processed

4In this paper, the non-iterative methods will be referred as Bancroft, Bucher and Bakhoum
5http://www.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
631 showed to be a suited number to reach a reliable result.
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points. The failure rate were characterized by the number of times that the algorithm could
not define the coordinates (i.e, NaN7 or Inf8 were returned) or the coordinates represented an
error above 20 meters. Finally, the processing time were determined by summing up the time
required for estimation and dividing it by the number of processed points.

4. Results

The goal of the simulations were to measure the performance of each algorithm as the number
of reference nodes were increased. It is clear that the Taylor method has the worst precision
as we can see on Figure 3-a and 3-c and the performance remains the same as the number
of receivers grows. The same behaviour is not experienced by the other algorithms. Both
average error and failure rate improves as the number of reference nodes are increased. This
effect is even more evident on Bancroft’s and Bucher’s algorithms. As expected, the most
computationally demanding algorithms are those base on iterative methods, especially the
ones that use evolutionary approach, as we can verify on Figure 3-b.

(a) Average error (b) Processing time

(c) Failure rate (d) Failure rate without Taylor results

Figure 3: Performance comparison: mean and processing time

Except for the Taylor method, Table 1 shows that increasing the number of reference nodes
increases the processing time and decreases the average error.

7Not a number.
8Divided by zero
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Nodes Bancroft Bucher Bakhoum LeastSquares Taylor Quasi-Newton GATOA GATDOA

4 0.1202 4.5136 3.7308 0.1269 22.5520 0.1092 0 0.3418
5 0.1145 2.1159 2.0789 0.1294 25.3050 0.1058 0 0.2057
6 0.0957 2.4586 2.4906 0.1236 27.5100 0.0879 0 0.1533
7 0.0889 2.7016 2.3469 0.1159 24.5190 0.0800 0 0.2255
8 0.0843 2.5896 2.5628 0.1109 21.8920 0.0766 0 0.2858
9 0.0812 0.5570 0.5014 0.1105 22.3410 0.0730 0 0.3258
10 0.0784 0.3472 0.3446 0.1128 27.4880 0.0710 0 0.2721
11 0.0751 0.2520 0.2984 0.1083 22.8340 0.0662 0 0.4306
12 0.0736 0.2581 0.2262 0.1085 23.7870 0.0648 0 0.3459
13 0.0736 0.1935 0.1944 0.1101 26.3310 0.0621 0 0.2983
14 0.0728 0.1876 0.1881 0.1133 27.8050 0.0612 0 0.2771
15 0.0701 0.1593 0.1652 0.1112 28.7340 0.0571 0 0.3263
16 0.0692 0.1610 0.1605 0.1112 29.6640 0.0561 0 0.4049

(a) Average Error (m)

Nodes Bancroft Bucher Bakhoum LeastSquares Taylor Quasi-Newton GATOA GATDOA

4 0.1051 0.1027 0.1003 0.09506 0.0998 1.2115 10.8520 7.0198
5 0.1062 0.1117 0.1076 0.09783 0.1004 1.4746 11.4110 7.4599
6 0.1040 0.1170 0.1180 0.09943 0.1035 1.6774 12.1100 7.9715
7 0.1060 0.1389 0.1382 0.09883 0.1019 1.8934 12.9160 9.1551
8 0.1072 0.1643 0.1602 0.0957 0.1061 2.1534 13.5630 9.0107
9 0.1097 0.1919 0.1945 0.0988 0.10657 2.4092 14.3050 9.5993
10 0.1112 0.2236 0.2215 0.1009 0.1066 2.651 15.0350 10.1060
11 0.1118 0.2641 0.2661 0.1024 0.1077 2.8595 15.9750 10.7230
12 0.1127 0.3218 0.3162 0.09976 0.1066 3.0821 16.5390 11.2090
13 0.1113 0.389 0.39 0.1003 0.1098 3.3217 17.454 11.8510
14 0.1164 0.4711 0.4669 0.1004 0.1096 3.5661 18.0860 13.7930
15 0.1165 0.5579 0.5511 0.1018 0.1134 3.8125 18.8140 12.7570
16 0.1165 0.6636 0.6604 0.1019 0.1102 4.0429 22.0110 15.0320

(b) Processing Time (ms)

Table 1: Mean absolute values obtained from the simulations

We can infer from the values above that Bancroft’s and Quasi-Newton’s algorithms present
the best performance in terms of precision. Although, the Genetic Algorithm based on TOA
offers an exact solution, it is also true that this algorithm is limited to a 1m of precision.

5. Conclusion

In this paper, four iterative and non-iterative algorithms are evaluated under an overdetermined
circumstance. We verified how each algorithm react as the number of reference nodes increases.
We were able to check the best and worst performances regarding average error, failure rate and
processing time. Among the iterative and non-iterative algorithms, Bancroft and Quasi-Newton
methods outperform the others. As future approaches, we consider optimizing the evolutionary
algorithms in order to improve their performance. We may investigate the dilution of precision
in order to find the best geometric positions to place the receivers and also verify qualitatively
where and when the failure happens, i.e, the algorithm’s singularity.
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Abstract Many statistical tools for model validation and comparison are based on some suitable measures
of distance (discrepance). Examples are: deviance residual, chi-squared type statistics, odds ratio
and Mahalanobis distance. In Item Response Theory (IRT), which comprises a widely used set
of psychometric models, some of these distance-type statistics can be used to verify the validity
of many important assumptions such as: unidimensionality, the adequability of the item response
function, the adequability of the latent trait distribution, the presence of DIF (Differential item
functioning) among others. However, under a frequentist approach, the using of these statistics
can be complicated because their distributions, under the null and alternative hypothesis, are
usually not known. On the other hand, under the Bayesian paradigm, the obtaining of the so-
called Bayesian p-values, related to these statistics, through MCMC algorithms, is feasible and
straightforward. In this work, we explore the using of some of these statistics, under the Bayesian
paradigm, to verify the validity of some usual assumptions for unidimensional IRT models for
dichotomous responses. More specifically, through simulation studies, we intend to verify the
relationship of some of these measures of distance with the departing of some assumptions. With
the results we intend to understandig how suitable the aforementioned measures of distance are in
detecting the departing of the aforementioned assumptions.

Keywords: Item response theory, Model fit assessmente, Bayesian Inference

1. Introduction

The Item Response Theory (IRT) comprises a set of widely used psychometric models. The
most basic elements of this class of models, establish relationships between the so-called item
parameters and the latent traits, through statistical models. In their turn, these models consider
the probability of subjects get a certain score in each item, based on the responses of these
subjects to these items. In general, the items are clustered in some measurement instrument, as
a cognitive test or a psychiatric questionnaire. See [4] and [5], for more details. In this work, we
will focus on our attention in dichotomous items, or item which are corrected as right/wrong.
In addition, we will consider the most basic IRT models, that is, models that consideres only
the item parameters and the latent traits.

As in any statistical model, it is necessary to consider some assumptions in order to estimate
the parameters and to obtain results that are both interpretable and useful. Therefore, for a
given data set, the model used to analyze it, must be fit to the data, properly. For the unidimen-
sional IRT models to dichotomous responses, the usual assumptions are: the unidimensionality
of the latent traits, the adequability of the item response function (IRF) and the adequability
of the latent traits distribution. Several methods have been proposed in the literature for model
fit assessment. The works of [9], [10], [11], [12] and [13], present some reviews concerning this
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topic. Commonly, some type of distance (as the deviance residuals, chi-square type statistics
and Mahalanobis’s distance) are used, see [3] and [12]. Under a frequentist approach, the using
of such distances can be complicated because their distribution, under both null hypothesis (the
model assumption holds) and alternative hypothesis (the model assumption does not hold) are,
in general, unknown. However, under the Bayesian paradigm, it is not necessary to know their
distribution and the validity of the model assumptions can be checked by considering the so-
called Bayesian p-values associated with these statistics (distances). Even though many works
have explored the using of such statistics under the Bayesian paradigm, more detailed studies
concerning the behaviour of them in identifying the lack of the aforementioned assumptions
in the IRT model are necessary. The main goal of this work is to study the behavior of some
distance-type statistics for undimensional IRT models for dichotomous responses. Our focus is
to study the performance of these statistics in terms of identifing the lack of model fit by the
violation of some of the aforementioned assumptions and in identifing when the assumptions
hold. We will consider simulation studies for different situations in terms of number of subjects
and size test. In the following subsections we will provide more details about the measures of
distance and the simulation studies that will be considered.

2. Undimensional IRT models for dichotomous responses

Let Yij be a random variable which assumes the value 1 if the subject j answers the item i
correctly and 0 otherwise. We assume that each subject is submitted to a test of I items and a
response matrix of 0’s and 1’s is available. One of the most used IRT models for dichotomous
responses is the three-parameter model:

Pij = P (Yij = 1|θj , ζi) = ci + (1− ci)F [ai (θj − bi)] , (1)

where θj is the latent trait of the subject j (which can represent the knowledge level in Math-
ematics, the depression level, among other possibilities), ai is the discrimination parameter
of item i, bi is the difficulty parameter of item i, ci is the guessing parameter of item i,
ζi = (ai, bi, ci) and F (.) is a cdf (cumulative distribution function) of interest. Usual choices
for F (.) are the logistic and probit functions. For the first choice, the model (1) becomes

Pij = P (Yij = 1|θj , ζi) = ci + (1− ci)
1

1 + e−ai(θj−bi)
. (2)

For the second choice, we have:

Pij = P (Yij = 1|θj , ζi) = ci + (1− ci)Φ [ai (θj − bi)] , (3)

where Φ(x) =
∫ z

−∞

e−z
2/2

√
2π

dz. Figures 1 and 2 show examples of curves, called item character-

istic curve (ICC), for the model given by equation (2). We can see that, for a given value of
parameter b, the higher is the value of parameter a the steeper is the ICC. On the other hand,
for a given value of the parameter a, the higher is the value of the parameter b, the more shifted
to the right is the ICC. In addition, the higher is the value of the parameter c the closer to 1 is
the ICC, for the examinees with low values of the latent traits. More details can be found in
[4] and [5]. Another interesting feature of the IRT models is that the scale of the latent traits
is completely arbitrary (in our example we consider a latent trait scale with mean equal to 0
and standard deviation equal to 1).
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For a (n× I) matrix of (0,1) responses, the parameters (θ, a, b, c) can be estimated by using
several methods as the marginal maximum likelihood, marginal maximum a posterior, CADEM
(Condicional Augmented Data EM) algorithm and by using a fully Bayesian approach trough
MCMC (Monte Carlo Markov Chain) algorithms, see [4], [1], [8] and [2], for example.
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Figure 1: Examples of ICC’s for the three-parameter logistic model for different values of
discrimination parameter (b=0.0;c=0.20)

3. Measuring the Goodness of fit in IRT models through
distance type statistics

3.1 Chi-square type distance

Let NCk denote the number of examinees getting exactly k items correct, k = 0, 1, 2, ..., I.
[6] and [7] suggest compare the observed and predicted score distributions to measure the
overall model fit. To summarize the model fit to the observed score distribution in a sin-
gle number, Beguin and Glas (2001) suggested the using of the discrepancy measure χ2

NC =∑I
k=1

(NCk−E(NCk))2

E(NCk) , where E(NCk) is the expectation of NCk. Although the statistic χ2
NC

does not follow a chi-square distribution, the Bayesian p-value provides a measure of overall
goodness of fit. Clearly, the discrepancy measure χ2

NC is a distance, once that measures the
difference between the observed value NCk and the expeceted value E(NCk).

3.2 Residual type distance

For each Yij , i = 1, ..., I; j = 1, ..., n we can define the deviance residual, that is

DRij =
[√
−2 ln (1− Pij)

]1−yij [√
2 lnPij

]yij
.
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Figure 2: Examples of ICC’s for the three-parameter logistic model for different values of
difficulty parameter (a=1.0;c=0.20)

It is clear that, depending on the value of the response (yij), the value of the deviance
residual changes. Therefore, it can be seen that the above quantity measures the difference
beteween the observed response and the expected reponse.

3.3 Other type distance

Consider an item pair in the test. Let nkk′ , k, k′ ∈ {0, 1}, the number of subjects scoring k on
the first item and k′on the second item. The odds-ratio is defined as:

OR =
n00
n01
n10
n11

= n00n11
n01n10

in other words, we are measuring the distance between the proportion of incorrecet/correct
answers among each pair of items.

4. Calculating Bayesian p-values for the distance type
statistics

Let yobs be the matrix of observed responses, and yrep the matrix of replicated responses
generated from its posterior predictive distribution. The posterior predictive distribution of
the response data of group k is represented by

p
(
yrep | yobs

)
=

∫
p (yrep | ϑ) p

(
ϑ | yobs

)
dϑ,

where ϑ denotes the set of model parameters considered in the discrepancy measure. Generally,
given a discrepancy measure D (y,ϑ), the replicated data can be used to evaluate whether the
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discrepancy value given the observed data is typical under the model. A p-value can be defined
that quantifies the extremeness of the observed discrepancy value,

p0
(
y(obs)

)
= P

(
D
(
y(rep),ϑ

)
≥ D

(
y(obs),ϑk

)
| y(obs)

)
, (4)

where the probability is taken over the joint posterior of (y(rep),ϑ). Consider, for example,
the χ2

NC distance. In this case NCk = f(yobs),E(NCk) =
∑n
j=1 Pij and ϑ = (θ,a, b, c)′.

Therefore, in this case, D(y,ϑ) = χ2
NC . In general, the distances can be defined in order to

provide a overall, by item (adequability of the IRF) or by subject (adequability of the latent
traits distribution) measure of model fit. The Bayesian p-value can be easily estimated by
using the MCMC outputs as simply evaluating the observed proportion as defined in (4). The
higher is the value of value of the Bayesian p-value, equation (4), better is the model fit.

5. Simulation study

We will generated a several number of replicas (matrix with responses of the subjects to the
items) from different IRT models (one, two and three parameter), with one, two and three
latent trait dimension and considering different latent trait distribution (normal, left skewed,
right skewed and uniform). With these replicas we will estimate the parameters and calculate
the bayesian p-values related to the aforementioned measures of distance, using the one, two
an three onedimensional IRT models and a standard normal distribution for the latent traits.
Therefore, we wil, study the behavior of the bayesian p-values in detecting the departing of
the usual model assumptions (unidimensionality, the correct specification of the item response
function and the correct specficitation of the latent traits distribution).
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Abstract Methods designed to solve the Distance Geometry Problem (DGP) aim at finding a valid embedding
to a given weighted simple undirected graph, given a set of pairwise distances between points. DGP
has been applied to several practical problems such as protein structure detection and Nuclear
Magnetic Resonance Spectroscopy. On the other hand, the Stellar Cluster Membership Problem
(SCMP) rises from astronomy domain and consists in segregating the field and cluster stars from
catalogues which are generated from images taken from a telescope. In this paper, we sketch a
formulation of SCMP as a variation of the DGP through the use of concepts from Spectral Graph
Theory.

Keywords: molecular distance geometry, astronomy, star clustering

1. Introduction

Open clusters are stellar systems that share a common origin. They have widespread usage in
Astronomy as they are key to understanding star formation and evolution as well as galaxy
dynamics and structure (see for instance [3, 9, 10]). Certain photometric characteristics of stars
in a cluster can point out that they formed from a same primordial cloud within a relatively
short time scale. This is important, since all cluster member stars should have approximately
the same age and share chemical properties. Furthermore, studies comprising several open
clusters can help us to understand both the formation and kinematics of the Galactic disk
due to the spread of the cluster age and mass distributions. Thus, the study of open cluster
ages, distances, masses, luminosity and mass functions constitute important research topics in
Astronomy. In this context, one of the most fundamental challenges is the problem of finding
which are the stellar cluster members in a given stellar field.

This problem consists in segregating the field and cluster stars in a given field from catalogues
which are generated from images of a telescope. Such procedure is known as membership
assignment, or membership segregation (here we adopt Stellar Cluster Membership Assignment,
or SCMP). Usually, the most widespread data available to solve the problem are the positions
of each star as well as their photometric parameters. These parameters are related to the
measurement of magnitude of each star in each wavelength passband.

The Distance Geometry problem has been intensively studied due to its applications to var-
ious real life problems. In particular, many of these problems are defined in three dimensional
space and can be modeled as a Molecular Distance Geometry Problem (MDGP). In [8], ap-
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plications in diverse domains are presented, such as in protein conformation, robotics, graph
rigidity, data visualization and wireless sensor networks. Usually, the MGDP can be formu-
lated as a minimization of an objective function consisting of a sum of error terms, which turns
out to be a continuous Global Optimization problem. A survey of continuous methods to this
specific problem can be found at [6]. It is also possible to model the MDGP in a discrete space.
A very recent algorithm to solve the discrete version of the problem, called Branch and Prune,
was developed by [5].

A common issue when solving SCMP is that there might exist some correlation between
the random variables that represent the photometric measurements of each star. Therefore,
dimensionality reduction is a step before applying some clustering algorithm. In this paper, we
sketch a Spectral Graph Theory based dimensionality reduction approach that can be applied
in the context of SCMP.

2. Problem Formulation

The positions projected on the celestial sphere and photometric measurements of astronom-
ical objects are the most widespread type of information accessible to researchers about the
Universe. These photometric measurements are based on filters which allow only a certain re-
gion of the electromagnetic spectrum to be observed, as different information can be obtained
about the stars using different filters and different filter combinations (which are called colors).
Hence, astronomical observations usually are performed using different sets of filters, and thus
for each star different magnitude measurements are obtained. Examples of photometric filters
are U (ultraviolet), B (blue), V (visible), R (red) and I (infrared). Even if usually there is
some redundancy between some of these values, and their linear combinations (colors), they
can be used to infer some properties of the stars (such as its temperature) or of the interstellar
medium between the star and the Earth (the reddening).

In addition to this photometric data, each image also provides the position of the object in
the image, which can be converted to a position on the celestial sphere. Although one could first
guess that by considering the coordinates of two stars in the picture (i.e, their x-y position),
that they are close in 3-dimensional space, this is not true due to the projection effect: in the
3-dimensional space these stars may be very distant. Hence, the challenge is to segregate the
field and cluster stars, taking as input the positions and photometric data for each star.

According to the above description, our input data is a dataset of records, each one of
them representing a single star in the original telescope image. This dataset can be modeled
as a collection of (m + 2)-vectors, where m is the number of photometric bands used in the
measurement, and they also can be modeled as an weighted undirected graph. Before presenting
our proposed model, we introduce some relevant notation and concepts.

2.1 Notation and Problem definition

Let G be an undirected and simple graph. We denote by V = V (G) and E = E(G) its vertex
and edge sets, respectively, such that the number of vertices is given by |V (G)| = n. Also, we
consider G as a weighted graph with a weight function

w : V (G)× V (G)→ R+

which assigns a real nonnegative weight w(u, v) or wuv to each pair u, v of vertices. It is required
that wuv > 0 if uv ∈ E(G) and wuv = 0 if uv /∈ E(G). Since G is undirected, wuv = wv,u and,
if e = uv, we write w(e) instead of w(u, v). An embedding of G in Rl is a function x : V → Rl.
For simplicity, we write xv to x(v) for any vertex v ∈ V . Also, an embedding is valid for G if

‖ xu − xv ‖= wuv
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for every edge uv ∈ E, where ‖ · ‖ is the Euclidean norm. The Distance Geometry Problem
consists of finding a valid embedding in Rl to a given weighted simple undirected graph G.
That can also be thought as the following unrestricted optimization problem:

min
x

∑
uv∈E

(‖ xu − xv ‖2 − w2
uv)2,

where the distances wuv are known and the vectors xu =
(
x1
u, . . . , x

l
u

)T
for each vertex u ∈ V

are unknown.
Let us define the position of a star u in 3-dimensional space by the vector xu = (xu, yu, zu). If

the coordinates of the vectors xu = (xu, yu, zu) for each star u of the field were known, one could
easily determine the open cluster, if any. The point is that, while the coordinates xu and yu are
available, we do not have the coordinate zu for every star u. On the other hand, for every star
u, a collection of n photometric parameters denoted by pi, i = 1, . . . , n are available. Besides,
this photometric data encode information about the unknown coordinate. To better clarify the
problem definition, we introduce some notation. Let S be the set of stars with cardinality k
and let m = n+2 be the quantity of available parameters for each star. So, we write P ∈ Rk×m
as a matrix such that each row u is given by the vector Pu = {xu, yu, pu1 , . . . , pun}. Next, we
define the SCMP.

Definition 1. Let S be the set of stars and let P be the matrix of parameters associated to
S. The Stellar Cluster Membership Problem consists in using the vectors P u to determine the
subset of stars S′ ⊂ S that corresponds to the open cluster.

Observe that the main challenge here is to extract information from each row P u of P in
order to segregate the stars from the field, i.e., to determine which stars are in fact clustered
in 3-dimensional space. In the following, we present our proposed formulation to the SCMP.

3. Proposed model

Consider each star u as a vertex of a graph G. Since each star u is related to a vector Pu ∈ Rm
we can easily obtain the matrix of weightsW computing the Euclidian distances between every
pair of vertices u and v, where u 6= v. Note that G is a complete undirected weighted graph
on the vectorial space Rm. An interesting question that drives our work is the following:

Which is the smallest l such that there is a feasible embedding to G in Rl ?

Originally, we have a graph G in Rm and we want to reduce the dimensionality of this space.
We do this in order to latter identify the stars of the open cluster in a lower dimensional space,
by applying some clustering algorithm.

We now describe a spectral graph theory based approach to dimensionality reduction for the
SCMP. Spectral graph theory studies properties of graphs by applying concepts from Algebra
and Linear Algebra in a matrix related to a given graph. Thus, the use of eigenvalues and
eigenvectors of a given graph matrix and finding their relation to graph invariants are two of
the main topics in this area. One interesting graph matrix is the Laplacian. If G is a weighted
undirected graph, the Laplacian matrix is defined by

L(G) = D(G)−W (G),

where W (G) is the weight matrix and D(G) is the diagonal weight matrix and its entries are
row sums of W . Laplacian is a symmetric, positive semidefinite matrix which can be thought
of as an operator on functions defined on vertices of G. A survey of this matrix can be found
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at [7]. The authors in [1] proposed an algorithm to the dimensionality reduction and clustering
using the eigenvectors and eigenvalues of the Laplacian matrix of G. This algorithm is based
on four basic steps:

(i) build the graph (in our case the graph G is complete and it has been built already);

(ii) use the Heat kernel function to determine modified weights to the edges of G as a function
of the W matrix entries;

(iii) compute the eigenvalues and eigenvectors to the generalized eigenvalue problem

Ly = λDy,

where λ and y are the eigenvalue and the eigenvector of L, respectively.

(iv) choose some entries of the eigenvectors yi, for i = 1, . . . ,m to obtain the dimensionality
reduction.

By applying the above steps to the matrix P ∈ Rk×n, we find a new matrix P̃ ∈ Rk×l. In
particular, if we choose l = 3, and compute the Euclidean distance between all possible pairs of
points, we end up with a variantion the classical Distance Geometry Problem, namely, we have
a set of distances between points in R3 for which we only know two of their three coordinates.
Hence, some DG algorithm can be applied in order to find the complete embedding in R3.

After applying one of the above described approach to reduce the dimensionality of the
original space, some clustering algorithm, or more elaborated methods which enable taking
measurement errors into account (such as [4]) can be applied to the embedded graph in order
to segregate the stellar cluster from the field.
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Abstract Let G = (V,E) be a graph with a subset Vs ⊂ V of source nodes, a gateway g ∈ V \ Vs and a
function b : Vs → N. A flow φu of a source node u is a multiset of b(u) paths in G from u to g.
A flow φ on G is a set with one flow for each source node. Every flow φ defines a multigraph Gφ
with vertex set V and all edges in the paths on φ. A d-distance edge coloring of a flow φ is an edge
coloring of Gφ such that edges with the same color are at distance at least d in G. The d-distance
flow coloring problem (FCPd) is the problem of obtaining a flow φ on G with a minimum d-distance
edge coloring. We prove that FCPd is NP-hard, for any fixed distance d ≥ 2, even with just one
source node on general graphs. We also study several cases of FCPd proving their NP-hardness on
bipartite graphs. Finally, we show that a list version of the problem is inapproximable by a factor
of O(logn) even on paths for any distance d ≥ 1.

Keywords: Flow coloring, distance on graphs, chromatic index, NP-hardness

1. Introduction

Flow and Coloring are two classical problems in Graph theory. Usually, simple flow problems
are easy whereas coloring problems are hard. One could think of combining them in several
ways. What happens, for instance, if we want to color the edges of a subgraph induced by the
edges carrying flow in a network?

Before putting this question more precisely, let us say that a similar scenario has already
been considered in the Round Weighting Problem - RWP [5]. Motivated by wireless network
applications, the definition of RWP states that a flow must be sent, from sources to sink,
through a network by rounds. A round is a set of links that can transmit simultaneously
without interference, and therefore could share the same frequency. The distance between
links is one of the parameters that are taken into account to define a round.

Recently, the idea of combining flow and coloring was formalized and the term flow col-
oring was adopted [3]. Instead of rounds, color classes are used to cover the links carrying
flow. Counterparts of classical coloring parameters appear naturally. It is the case of the flow
chromatic index [3]. Here, we consider more general color classes.

Let G be a simple graph with a special subset Vs ⊂ V of vertices called source nodes, a
special vertex g ∈ V \ Vs called gateway, and a function b : Vs → N which associates an integer
demand b(u) to every source node u.

A flow φu of a source node u is a multiset of b(u) paths from u to the gateway g (these paths
are not necessarily distinct nor disjoint). A flow φ on G is a set containing one flow φu for each
source node u. Every flow φ defines a multigraph Gφ with vertex set V and all edges from the
paths on φ (the number of times an edge from G appears in Gφ is the same as the number of
paths on φ containing this edge).
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Table 1: Our results for FCPd

Problem Distance Graph type Source Complexity
FCPd d ≥ 3 Bipartite One source NP-hard
FCPd d = 2 Bipartite Multiple sources NP-hard
FCPd d = 2 Bipartite One source Open
FCP1 d = 1 General Multiple sources Open
List FCPd d ≥ 1 Path One source NP-hard

A d-distance edge coloring of a flow φ is an edge coloring of Gφ such that edges with the
same color are at distance at least d in the original graph G (the distance between two edges
is the minimum distance between their end vertices). Let Φ stand for the set of all possible
integer flows φ : E → Z+. The d-distance flow coloring problem (FCPd) consists in obtaining
a flow φ ∈ Φ with a minimum d-distance edge coloring. The minimum number of used colors
is called the d-distance flow chromatic index χ′Φ,d(G). If, for each edge, a list of possible colors
is given, the d-distance list flow coloring problem (LFCPd) is similarly defined.

The FCPd as defined here is studied in [2, 4] as a variant of the RWP and, tools to obtain
lower and upper bounds for general graphs were developed. A d+1

d d+1
2 e

-approximation algorithm
for FCPd was then presented. Exact and constructive results for grids are also obtained, in
particular for the case of FCPd with uniform demands. More recently, a polynomial time
algorithm for FCPd with d = 1 in any 3-connected graph and in several cases of 2-connected
graphs was obtained [3] extending the results in [2, 4] related to FCP1. However, the hardness
of FCPd, including the case d = 1, was still open.

Here, we address exactly the computational complexity of FCPd. In Section 2, we prove
that FCPd is NP-hard, for any fixed distance d ≥ 2, even with just one source node on general
graphs. For d ≥ 3, the same result is obtained even on bipartite graphs. In Section 3, we prove
the NP-hardness on bipartite graphs with multiple sources and d even. In Section 4, we prove
that LFCPd is inapproximable by a factor of O(logn) even on paths for any d ≥ 1. Our results
are summarized in the Table 1.

2. Hardness of FCPd with one source node for distance d ≥ 2

We prove that FCPd with only one source node is NP-hard for d ≥ 2 on general graphs and,
if d ≥ 3, on bipartite graphs. Let G be an instance of FCPd with only one source node u and
demand b(u) = 2. A cycle C = v1 . . . vk is interference free (d+ 1)-labeled if k is a multiple of
d+ 1 and, the edges vivi+1 and vjvj+1 are at distance ≥ d in G for |i− j| multiple of d+ 1.

Lemma 1. Let G be a graph with only one source node u and b(u) = 2. For d ≥ 2, χ′Φ,d(G) =
d+ 1 if and only if G has an interference free (d+ 1)-labeled cycle containing u and g.

Let IFLCd be the problem of deciding if a graph has an Interference free (d+1)-labeled Cycle
containing two given vertices. We prove that IFLCd is NP-hard by a reduction from 3SAT.

Theorem 2. IFLCd≥2 is NP-hard. Consequently, FCPd≥2 with one source node is also NP-
hard. If d ≥ 3, they are NP-hard even on bipartite graphs.

We sketch the main ideas of the proof. Given a 3SAT formula with variables x1, . . . , xn
and clauses C1, . . . , Cm, create for each xi a gadget shown in the Figure 1a, where the values
α, β, γ, δ (defined on Table 1) on the dashed lines are paths with α, β, γ, δ edges, respectively.

It is important to notice that α+ β = d, α+ γ + δ = d, β + γ = d− 2, if d ≥ 3 is even, and
β + γ = d− 1, if d ≥ 3 is odd. This implies that the distance d(ti,k, t′i,k) = d(fi,k, f ′i,k) = d, for
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Table 2: The sizes of the paths in the dashed lines of Figure 1a

Path d = 2 d ≥ 3 even d ≥ 3 odd
α 1 d/2 (d− 1)/2
β 1 d/2 (d+ 1)/2
γ 0 (d− 4)/2 (d− 3)/2
δ 1 2 2

...

...

...

...

ti,2ti,1 ti,m

true

false

t′i,1 t′i,2 t′i,m

fi,1 fi,2 fi,m

f ′i,1 f ′i,2 f ′i,m

γ γ γ

ββ βγ γ γ

αα α

δ δ

βββ

α α α

xi

biai

b′ia′i

δ

(a) Variable gadget

ẑk

ŷk dk

ŵk
Ck

ck

(b) Clause gadget

Figure 1: Gadgets for FCPd with one source node.

every i = 1, . . . , n and k = 1, . . . ,m. In this reduction, the dashed lines represent paths, which
we call dashed paths (we will prove that the cycle has no dashed path).

For each clause Ck = (wk∨yk∨zk), where wk, yk, zk are literals, create 5 vertices ck, dk, ŵk, ŷk, ẑk
and join them as described in the Figure 1b.

Also replace every non-dashed line in all gadgets by a path with 2(d + 1) edges, except,
for d odd, the lines aiti,1, aifi,1, which we replace by a path with 2d + 1 edges, and the lines
biti,m, bifi,m, which we replace by a path with 2d+ 3 edges, for every 1 ≤ i ≤ n.

Join bi to ai+1 with a path of size 2(d+1) (i < n). Join dj to cj+1 with a path of size 2(d+1)
(j < m). Join bn to c1 with a path of size 2(d + 1). Create special vertices u and v, join u to
a1 and a′1 with paths of sizes 2(d+ 1) and join v to b′n and dm with paths of sizes 2(d+ 1).

Finally, if the literal wk is xi for some 1 ≤ i ≤ n, then connect the vertex ŵk to fi,k and f ′i,k
with paths of sizes d− δ and δ, respectively (that is, with d− δ and δ edges, respectively). If
wk is xi for some 1 ≤ i ≤ n, then connect the vertex ŵk to ti,k and t′i,k with paths of sizes d− δ
and δ, respectively. Analogously, we do the same for yk and zk, for every 1 ≤ k ≤ m. Consider
all paths of this paragraph as dashed (forbidden for the cycle). This finishes the reduction.

Given a 3SAT formula Γ, let (G, u, v) be an instance of IFLCd≥2 obtained by the reduction
above. With some effort, it is possible to prove that G is bipartite for d ≥ 3. It is also possible
to prove that Γ is satisfiable if and only if G has an interference free (d + 1)-labeled cycle
containing u and v. The main ideia is to prove that any interference free (d+ 1)-labeled cycle
containing u and v cannot contain a dashed path.
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Figure 2: Reduction from 3SAT to FCPd for d = 2 and multiple source nodes.

3. Hardness of FCPd with multiple sources for distance d ≥ 2

We show that FCPd=2 is NP-hard on bipartite graphs by a reduction from 3SAT to FCP2
inspired by [1]. Figure 2 shows an example for the formula Γ with clauses C1 = (x1 ∨ x1 ∨ x2),
C2 = (x1 ∨ x1 ∨ x2) and C3 = (x1 ∨ x2 ∨ x2). A truth assignment of Γ appears in bold.

In general, given a 3SAT instance Γ with n variables and m clauses, we construct a bipartite
graph G with 4 layers of vertices. In layer 4 (the top layer), create n + m vertices associated
with the variables and clauses of Γ. In layer 3, create vertices Fx and Tx (representing False
and True) for each variable x and connect them to the vertex x on layer 4. For each clause,
create a vertex and connect it to the associated vertex on layer 4. In layer 2, create a vertex
for each variable x and connect it to Fx and Tx on layer 3. For each clause C = (z1 ∨ z2 ∨ z3),
create 3 new vertices z1, z2 and z3 and connect them to the associated clause in layer 3. For
i ∈ {1, 2, 3}, connect each literal zi = x (resp. zi = x) to the vertex Fx (resp. Tx) on layer 3.
In layer 1, create the gateway g and connect it to every vertex on layer 2. Every vertice on
layer 4 is a source node u with demand b(u) = 1.

Theorem 3. If Γ is satisfiable, then χ′Φ,2(G) = n+m+ 1. Otherwise, χ′Φ,2(G) = n+m+ 2.
Consequently, FCPd=2 is NP-hard on bipartite graphs.

4. Inapproximability of LFCPd≥1 in path graphs

We prove that LFCPd is inapproximable by a factor of O(logn), with an approximation pre-
serving reduction from the Set Cover Problem (SCP). Given a set S = {s1, . . . , sn} and a
family F with m subsets of S, the objective of SCP is to obtain a minimum number of sub-
sets in F that cover S (that is, their union is S). Raz and Safra [6] proved that SCP is
O(logn)-inapproximable. This holds even for instances where |F| ≤ |S|.

Given an instance (S,F) of SCP, we construct a graph G, which will be a path. For every
element si ∈ S, create two vertices xi and yi, connect them with an edge and set the list L(xiyi)
of the possible colors of the edge xiyi to be all subset in F that contains si. For every i < n,
connect yi and xi+1 with a path of length d, where the list of possible colors of the k-th edge
of each path has only the color k (1 ≤ k ≤ d). Graph G has only one source node, that is x1
with demand b(x1) = 1, and the gateway is the vertex yn.

Given a solution (a flow coloring) for LFCPd in G, it is possible to prove that the colors used
in the edges x1y1, . . . , xnyn form a set cover of S. The number of colors in G is the size of the
set cover of S plus d. Therefore, the size of the minimum set cover is equal to χ′Φ,d(G) − d.
Since d is constant, it is an AP-reduction, which, together with [6] implies the following:

Theorem 4. If P 6= NP, LFCPd≥1 is O(logn)-inapproximable even on paths.
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Abstract The interval Discretizable Molecular Distance Geometry (iDMDGP) consists in a subclass of
distance geometry problems that can be discretized. Instances of the iDMDGP can be solved by
employing an efficient interval Branch & Prune (iBP) algorithm. However, instances can belong
to the iDMDGP class only if some particular assumptions are satisfied, that are mainly based on
the order on which the atoms of the molecule are considered. In this short paper, we present 5
special orders for the side chains of 5 amino acids, the ones that contain rings in their structure.

Keywords: protein conformations, distance geometry, combinatorial optimization, Branch & Prune, side
chains.

1. Introduction

We consider the interval Discretizable Molecular Distance Geometry Problem (iDMDGP) [3],
which is the subclass of distance geometry problems where the distance information can be
represented by suitable intervals and a discretization of the search space can be performed. We
are particularly interested in problems arising in biology, and therefore our instances represent
molecules, and specifically proteins, in the Euclidean three-dimensional space.

An instance of the iDMDGP can be represented by a weighted undirected graphG = (V,E, d)
where each vertex v ∈ V represents an atom of a given molecule and each edge (u, v) ∈
E represents the known distance between the vertices (atoms) u and v. The weight d(u, v)
associated to an edge (u, v) can correspond either to a precise distance or to a suitable interval
where the actual distance is supposed to be contained. Supposing that there exists a total order
relationship for the vertices of V , we consider iDMDGP instances that satisfy the following
assumptions:

1. (1, 2, 3) ⊂ V is a clique and all distances are precise,
2. ∀v ∈ {3, . . . , n}, (i− 2, i) and (i− 1, i) correspond to precise distances,
3. ∀v ∈ {4, . . . , n}, ∀j, k ∈ {v − 3, . . . , v}, (j, k) ∈ E,
4. ∀v ∈ {2, . . . , n− 1}, d(v − 1, v + 1) < d(v − 1, v) + d(v, v + 1).

∗The authors wish to thank CAPES, that funded a 4-month visit to Rennes for Virginia Costa (part of this work was
performed during such a visit). We are also thankful to the French Embassy in São Paulo and to UNICAMP, which
funded a 2-month visit (chaire) to UNICAMP for Antonio Mucherino. Finally, a special thank to Prof. Carlile Lavor for
his fruitful comments.
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We remark that only precise distances are concerned in the strict triangular inequalities.
These assumptions allow to compute the possible positions for the generic atom v as the
intersection among three Euclidean objects, which are related to the three immediate preceding
atoms v − 3, v − 2 and v − 1. Each Euclidean object can be either a sphere (when its radius
is precise) or a spherical shell (when it is represented by an interval). The intersection among
three spheres consists of, with probability one, two points in the three-dimensional space [2].
If one of the distances is represented by an interval, one of the spheres to be intersected is
replaced by a spherical shell, so that the intersection generally consists of two disjoint curves.

The interval Branch & Prune (iBP) algorithm is based on the idea of building the search
domain (a tree) recursively, and to verify the feasibility of its branches “on the fly”, in order to
prune the infeasible branches as soon as possible. In order to apply the algorithm, an order on
the vertices of G must be available such that the above assumptions are satisfied. More details
about iBP and the orders that allow for discretization can be found in [1].

As it is well known, proteins are chains of amino acids that fold in unique conformations,
that imply a certain function for the molecule. Only 20 amino acids can be involved in the
protein synthesis, and each of them has a different side chain. In a previous work [4], we
proposed special orders that allow for the discretization to the 8 smallest side chains that can
be part of an amino acid. In this short paper, we consider other 5 side chains, the ones that
contain rings, i.e. local rigid conformations formed by 5 or 6 Carbon atoms that are bonded in
a way to form this particular structure.

The rest of this paper is organized as follows. In Section 2 we remind the definition of
repetition order (re-order) and present the 5 re-orders for the 5 considered side chains. Section 3
presents some computational experiments, while Section 4 concludes the paper.

2. Orders for side chains with rings

Let us consider that the set of edges E of G can be partitioned into those edges {u, v} ∈ E′ for
which d(u, v) is a real nonnegative number, and those edges {u, v} ∈ E′′ for which d(u, v) is a
finite set of points belonging to a positive rational interval. Let V ′ = V ∪ {0}. A repetition
order (re-order) is a sequence r : N→ V ′ with length |r| ∈ N (for which ri = 0 for all i > |r|)
such that:

G[{r1, r2, r3}] is a clique
for all i ∈ {4, . . . , |r|} the sets {ri−2, ri}, {ri−1, ri} are edges in E′

for all i ∈ {4, . . . , |r|} the set {ri−3, ri} is either a singleton (i.e. ri−3 = ri ) or an edge in
E′ ∪ E′′.

It is possible to easily verify that any re-order r represents an iDMDGP instance.
Fig. 1 shows the 5 re-orders that we hand-crafted for the 5 side chains containing rings. As

in the previously proposed orders [1, 4], for artificially adding precise distances in our instances
(distances between two copies of the same atom), Carbon atoms can be considered more than
once in the orderings. Side chains with rings are generally larger than the others: the smallest
we consider is the proline, where the re-order is composed by 18 vertices, while the largest is
the tryptophan, whose re-order contains 40 vertices.

3. Computational Experiments

In this section, we present some computational experiments on iDMDGP instances, which were
randomly generated considering the 5 side chains shown in Fig. 1. We suppose that all the
covalent bond lengths are equal to 1.33Å and the angles between two covalent bonds are equal
to 110◦. All codes were written in C programming language and all the experiments were
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Figure 1: Hand-crafted orders for the side chains with rings: Histidine (HIS), Phenylalanine
(PHE), Proline (PRO), Tryptophan (TRP) and Tyrosine (TYR).
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Amino Acid Sequences Number of Vertices min(D) CPU time
PRO-PHE-HIS-TRP 123 9 174.84
PHE-PRO-TYR-HIS 123 8 252.07
HIS-TYR-PRO-TRP 128 11 5.12
PRO-PHE-PRO-HIS 104 8 0.57
TYR-TYR-HIS-PRO 126 8 44.74
TRP-TRP-PHE-PRO 132 8 58.76

Table 1: Some computational experiments on the proposed orders for the 5 side chains

carried out on an Intel Core i7 2.30GHz with 8B RAM, running Linux. The codes have been
compiled by the GNU C compiler v.4.7.2.

Table 1 shows some experiments on some small instances. In this table, we provide the
total number of vertices forming our instances, the minimum number D of points selected
from each interval (i − 3, i) for obtaining at least one solution [1], and the CPU time (in
seconds) necessary for finding this solution. We can observe that the presented orders allow
to discretize the considered instances, and that the CPU time ranges from about 1 second to
about 4 minutes. It is important to observe that the iBP algorithm can return more than
one solution and the number of found solutions, as well as the CPU time, is related to the
distances between hydrogens and to the pruning techniques. The first can be supplied by
NMR experiments, while the second one can be developed and improved using, for example,
information about the protein structure.

4. Conclusions

We provided 5 new special orders for 5 side chains containing rings. These orders allow to
discretize instances containing this kind of side chains. Only information about the chemical
structure of the amino acids is exploited for the conception of such orders, while NMR dis-
tances are supposed to be used only for pruning purposes in the iBP algorithm. Preliminary
computational experiments showed the effectivity of the proposed orders.
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Abstract We investigate several parameters of the monophonic convexity on graphs. In 2010, it was proved
that the m-interval number and the m-convexity number are NP-hard on general graphs [4]. In
this paper, we prove that deciding if the m-interval number is at most 4 and deciding if the m-
percolation time is at most 1 are NP-Complete problems in bipartite graphs. We also prove that
the m-Radon number and the m-convexity number are as hard to approximate as the maximum
clique problem. Finally, we present a polynomial time algorithm to determine the m-convexity
number on graphs with bounded clique number (as planar graphs and bipartite graphs).
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1. Introduction

Consider the following problem motivated by Distance Geometry applications: given a set U
of points in the plane, obtain the minimum subset S ⊆ U such that every point of U lies in the
line segment between two points of S.

We can view the points of S as infected. Given two infected points x and y, we say that v
is infected by x and y if v is in the line segment between them. We can also ask what is the
minimum subset S ⊆ U such that all vertex of U is infected after a finite number of sucessive
infections. We can also ask what is the maximum proper subset S ⊂ U which does not infect
a vertex.

In this paper, we investigate these questions in a different structure. The points are vertices
of a graph and the line segment between two vertices are the induced paths between them.

Such problems are intensively studied by the Theory of Convexity Spaces, which form a clas-
sical topic, studied in some different branches of mathematics. The study of convexities applied
to graphs has started later, about 50 years ago. Then the convexity parameters motivated the
definition of some graph parameters, whose study has been one of the central issues in graph
convexities. In particular, complexity aspects related to the computation of these parameters
has been the main goal of various recent papers.

Let G be a simple finite graph, with vertex set V (G) and C a family of subsets of V (G). The
pair (G, C) is a graph convexity when ∅ ∈ C, V (G) ∈ C and, if S1, S2 ∈ C, then S1 ∩ S2 ∈ C.
The subsets C ∈ C are called convex sets. The convex hull of a subset S ⊂ V (G), denoted by
hull(S), is the minimum convex set which contains S. If hull(S) = V (G), we say that S is a
hull set.

Next, we describe some graph parameters related to a graph convexity. The hull number
hn(G) of G is the size of a minimum hull set. The interval number in(G) is the size of the
minimum subset S ⊆ V (G) such that S is contained in no convex set, except V (G). The
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convexity number cx(G) is the size of the maximum convex set distinct from V (G). The Radon
number rd(G) is the minimum k such that every subset V ′ of V (G) of size at least k has a
Radon partition, which is a partition (V ′1 , V ′2) such that hull(V ′1)∩hull(V ′2) 6= ∅. Alternatively,
rd(G) is the size of a maximum anti-Radon set plus one, where a set is anti-Radon if it has no
Radon partition.

Clearly, the computation of these parameters for a graph would depend on the particular
convexity being considered. Among the existing convexities we can mention the following,
whose convex sets are based on paths of the graph: monophonic, geodesic and P3. They are
defined by letting the convex sets be closed, respectively, under induced paths, shortest paths
and paths of order 3.

Let the m-interval number be the interval number on the monophonic convexity. Analo-
gously, we define the same for the other parameters.

In 2010, it was proved that the m-interval number and the m-convexity number are NP-hard
on general graphs [4]. Interestingly, they obtained a polynomial time algorithm to compute the
m-hull number of a graph.

In this paper, we extend some of these results. We prove that deciding if the m-interval
number is at most 4 is NP-Complete in bipartite graphs. We also prove that the m-Radon
number is as hard to approximate as the maximum clique problem. Finally, we present a
polynomial time algorithm to determine the m-convexity number on graphs with bounded
clique number (as planar graphs and bipartite graphs).

2. The interval number of the monophonic convexity

In 2010, it was proved the following theorem [5], which is very useful in this section.

Theorem 1 ([5]). Given a bipartite graph G and three distinct vertices x, y, z, deciding whether
there is an induced path from x to y passing through z is NP-complete.

Given a subset S ⊆ V (G), we define the monophonic interval I(S) as the set with the
vertices in S and all vertices in an induced path between two vertices of S. If I(S) = V (G),
we say that S is a monophonic set of G. The following corollary is a direct consequence of the
Theorem 1.

Corollary 2. Given a connected bipartite graph G and three distinct vertices x, y, z, deciding
whether z ∈ I({x, y}) is NP-complete.

From the above corollary, the problem of determining the monophonic interval of a set X is
NP-hard, even if X has only two elements and the graph is bipartite.

The following theorem proves that deciding if a set S of vertices is a monophonic set is
NP-Complete, even if the graph is bipartite and S has at most 4 elements.

Theorem 3. Given a connected bipartite graph G and a set S with at most 4 vertices of G,
deciding whether S is a monophonic set is NP-complete.

Sketch of the proof. A certificate that this problem belongs to NP is a set of at most |V (G)|−|S|
induced paths, each one beginning and finishing in distinct vertices of S, such that every vertex
of V (G) \ S appears in at least one of these paths.

We describe a reduction from the decision problem given in Corollary 2. Let H be a bipartite
graph with bipartition (A,B) and let x, y, z be three distinct vertices of H. Without loss of
generality, suppose that z ∈ B. Define a bipartite graph G by adding to H six new vertices
a1, a2, b1, b2, c1, c2 such that a1 and a2 are adjacent to all vertices in B \ {z}, b1 and b2 are
adjacent to all vertices in A. Also include the edges a1b1, b1c1, a2b2, b2c2. Clearly G is bipartite
with bipartition (A ∪ {a1, a2, c1, c2}, B ∪ {b1, b2}). Set S = {x, y, c1, c2}.
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We have to show that z ∈ I({x, y}) in H if and only if S is a monophonic set of G. Notice
that A ⊆ I({c1, c2}), since, for every vertex v ∈ A, there is the induced path c1b1vb2c2. Also
notice that B \ {z} ⊆ I({c1, c2}), since, for every vertex v ∈ B \ {z}, there is the induced path
c1b1a1va2b2c2. Thus I({c1, c2}) = V (G)\{z}, since every induced path containing z must have
two neighbors of z, which are in A and are adjacent to b1 and b2. Finally, notice that there is
no induced path containing z between a vertex in {x, y} and a vertex in {c1, c2}, since every
induced path containing c1 must contain b1, which is adjacent to all neighbors of z.

Assume that z ∈ I({x, y}) in H. Since every induced path of H is also an induced path of
G, then z ∈ I({x, y}) in G. Consequently I({x, y, c1, c2}) = V (G).

Now assume that I({x, y, c1, c2}) = V (G). Since I({c1, c2}) = V (G)\{z}, then z ∈ I({x, y}),
since, as already mentioned, z is not in any induced path between a vertex in {x, y, c1, c2} and
a vertex in {c1, c2}.

Finally, we prove that deciding if in(G) ≤ 4 is NP-Complete, even if G is bipartite.

Theorem 4. Given a bipartite graph G, deciding whether in(G) ≤ 4 is NP-complete.

Sketch of the proof. A certificate that this problem belongs to NP is a set S with at most 4
vertices and a set of at most |V (G)| − |S| induced paths between two vertices of S, such that
every vertex of V (G) \ S belongs to at least one of these paths.

We now show a reduction from the decision problem of Theorem 2: deciding whether a given
subset S is a monophonic set of a connected bipartite graph H with at most 4 vertices (we
assume that H has at least two vertices). Let S = {x1, . . . , xk}, where 2 ≤ k = |S| ≤ 4, be a
subset of vertices of a bipartite graph H.

Define a bipartite graph G by adding to H a set S′ = {x′1, . . . , x′k} of k new vertices and k
new edges x1x

′
1, . . . , xkx

′
k. We have to prove that S is a monophonic set of H if and only if

m(G) ≤ k.
At first, suppose that S is a monophonic set of H. We claim that S′ is a monophonic set of

G and then m(G) ≤ k. For this, let z ∈ V (G) \S. Since z ∈ I(S) in H, then z is in an induced
path between two vertices xi and xj in H. By the construction, z belongs to an induced path
between x′i and x′j in G. Now let z = xi ∈ S. Let P be a minimum path in G between z and a
vertex in xj ∈ S \ {xi}. Since G is connected, P exists and is induced. Then z = xi is in the
induced path x′ixiPxjx′j .

Now suppose that m(G) ≤ k. Since S′ has k vertices of degree 1, then S′ is the only
monophonic set of G with k vertices. Consequently every vertex of G belongs to an induced
path between two vertices in S′. This implies directly that every vertex of H belongs to an
induced path between two vertices in S.

3. The percolation time of the monophonic convexity

Given a graph G and a set S of vertices of G, let t(S) be the minimum k such that Ik(S) =
Ik+1(S), where Ik is the k-th iterate of the function I(·). The m-percolation time t(G) is the
maximum t(S) among all hull sets S in the monophonic convexity.

Regarding the percolation time of the P3-convexity, it was proved that it is polynomial time
solvable in grids [1, 2], it is polynomial time solvable to decide if it is at most 2 [3], but it is
NP-Complete to decide if it is at most 4 [3]. The question about the percolation time 3 in the
P3-convexity is still open.

With some arguments similar to the ones in the proof of Theorem 4, we obtain the following.

Theorem 5. Given a bipartite graph G, it is NP-hard to decide if the m-percolation time of
the monophonic convexity is at most 1.



106 Eurinardo R. Costa, Mitre C. Dourado and Rudini M. Sampaio

4. The Radon number of the monophonic convexity

Given a maximization problem P , let optP (I) denote the optimal solution value for some
instance I of P and, for a solution S of I, let valP (I, S) denote the associated value.

Given two optimization problems P and Q, we say that P is L-reducible to Q (P ≤L Q) (or
that there is an L-reduction from P to Q) if there is a triple (f, g, α, β), where α, β ≥ 1, f and
g are polynomial time computable functions such that f maps P -instances into Q-instances,

given a P -instance I and a feasible solution S of f(I), g(I, S) is a feasible solution of I,

optQ(f(I)) ≤ α · optP (I), and∣∣∣optP (I)− val(I, g(I, S))
∣∣∣ ≤ β ·

∣∣∣optQ(f(I))− val(f(I), S)
∣∣∣.

From this definition, it follows that the relative errors are linearly related:

|optP (I)− valP (I, g(I, S))|
optP (I) ≤ αβ |optQ(f(I))− valQ(f(I), S)|

optQ(f(I)) .

Hence, the existence of a
(

1
1−ε

)
-approximation algorithm for Q implies the existence of a(

1
1−αβε

)
-approximation algorithm for P .

Let Clique be the problem of compute ω(G): the size of a maximum complete subgraph of
a given graph G.

Theorem 6. The m-Radon number is NP-hard and there is an L-reduction from the clique
number to the m-Radon number. Consequently, for every ε > 0, approximating the m-Radon
number to within a factor n1−ε is NP-hard.

Sketch of the proof. We prove that Clique ≤L AntiRadon, where AntiRadon is the maximiza-
tion problem of return the size of a maximum anti-Radon set of a given graph plus one.

Let a graph G be an input instance of Clique. Let G′ = f(G) be the graph such that
V (G′) = V (G) ∪ {x, y}, where x and y are new vertices, and E(G′) = E(G) ∪ {vx, vy : v ∈
V (G)}.

Given a feasible solution R of G′ (that is, R is an anti-Radon set of G′), let C = g(G,R) =
R \ {x, y}. Notice that R has no pair of non-adjacent vertices. Otherwise, if R has two non-
adjacent vertices {u,w}, then the partition ({u,w}, R\{u,w}) of R is a Radon partition, since
x, y ∈ hull({u,w}) and V (G′) ⊆ hull({x, y}). Consequently, R is a clique of G′ and we can
assume that R contains either x or y. Thus C is a clique of G. Moreover, |C| = |R| − 1. Recall
that valAntiRadon(G,R) = |R|+ 1.

Furthermore, since every clique of G is an anti-Radon set of G′, this implies that ω(G) ≤
rd(G′) − 2 ≤ 2rd(G′). Moreover, ω(G) − |C| = (rd(G′) − 2) − (|R| − 1) = rd(G′) − (|R| + 1).
This proves that (f, g, 2, 1) is an L-reduction.

In 2006, it was proved that, for every ε > 0, approximating the clique number to within a
factor n1−ε is NP-hard [6]. Then, this is also true for the m-Radon number.

5. The convexity number of the monophonic convexity

In [4], it was proved that the m-convexity number is NP-Complete. The same idea of the proof
of Theorem 6 can be used to prove a stronger statement.

Theorem 7. The m-convexity number is as hard to approximate as the maximum clique prob-
lem.
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In [4], it was obtained a polynomial time algorithm to compute the m-hull number of a
graph. This algorithm applies a decomposition based on clique cutsets.

In our paper, we can use the main ideas of this algorithm to obtain a polynomial time
algorithm to determine the m-convexity number on graphs with bounded clique number (as
planar graphs and bipartite graphs). Roughly speaking, if G has no clique cutset, then cx(G) =
1. Otherwise, for every clique cutset C, let HC be the smallest component of G − C. Then
cx(G) is close to n−minC |HC |.
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Abstract Graph coloring composes a large and important class of combinatorial optimization problems, and
has been extensively studied in the literature. One of its key applications is in the planning of
resource allocation in mobile wireless networks, for which some models have been proposed, where
the coloring should to respect certain geography and technological distance constraints. In this
work, we show some coloring problems as the positioning of the vertices on the integer line (Z+),
where the point where the vertex is placed equals to its color, according to the distances between
adjacent vertices, and propose a branch-prune-and-bound algorithm for solving them. An empirical
analysis was made considering equality and inequality distance contraints.

Keywords: Algorithms, combinatorial optimization, graph theory, telecommunications.

1. Introduction

Let G = (V,E) be an undirected graph. A k-coloring of G is an assignment of colors 1, 2, . . . , k
to the vertices of G so that no two adjacent vertices share the same color [2]. The chromatic
number χG of a graph is the minimum value of k for which G is k-colorable. The classic graph
coloring problem (CP), which consists in finding the chromatic number of a graph, is one of
the most important combinatorial optimization problems and it is known to be NP-hard [4].

There are several versions of this classic vertex coloring problem [13], involving additional
constraints, in both edges as vertices of the graph, with a number of practical applications
as well as theoretical challenges. One of the main applications of such problems involves the
assignment of channels to transmitters in a mobile wireless network [12]. Each transmitter
is responsible for the calls made in the area which it covers and the communication among
devices is made through a channel consisting of a discrete slice of the electromagnetic spectrum.
However, the channels cannot be assigned to calls in an arbitrary way, since there is the problem
of interference among devices located near each other using approximate channels. There are
three main types of interferences: co-channel, among calls of two transmitters using the same
channels; adjacent channel, among calls of two transmitters using adjacent channels and co-
site, among calls on the same cell that do not respect a minimal separation. It is necessary to
assign channels to the calls such that interference is avoided and the usage of the spectrum is
minimized [1, 6, 7].

The separation among channels is a type of distance constraint, so we can see the channel
assignment as a type of geometry distance problem, since we have to place the channels in

∗This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) and CNPq
(Conselho Nacional de Desenvolvimento Científico e Tecnológico) - Brazil.
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Figure 1: Example of channel assignment with distance constraints. In the left image, between
two transmitters, if their geographical distance is between 0 and 2 km, the channels assigned
to them must be apart at least 2 other channels. If the distance is between 2 and 3 km, the
channels must be different and if the distance is greater than or equal 3 km, the transmitters
can use the same channel. The distances (geographical and channel separation) are given in
each edge. The bold number next to each transmitter is the channel assigned to it. The right
image shows the network as an undirected graph and the projection of vertices in the natural
number line.

the transmitters respecting some distances imposed in the edges, as can be seen on Figure 1.
One method to solve GD problems is the branch-and-prune approach [8, 9], where a solution
is constructed and, if at some point a distance constraint is violated, then we stop the building
of the current solution (prune) and try another option in the search space.

The remainder of this paper is organized as follows. Section 2 states theoretical models for
some channel assignment problems. Section 3 gives some coloring models stated as distance
geometry problems. Section 4 formulates a branch-prune-and-bound (B&P&B) algorithm for
the problems. Section 5 shows results of some experiments done with the B&P&B algorithm.
Finally, Section 6 concludes the paper and states the next steps of ongoing research.

2. Preliminaries

In [5] various theoretical models for channel assignment problems are given. Some of these
models are defined below.

In some instances of channel assignment problems,we have both frequency and distance con-
straints, that is, the channels attributed to calls must respect separation constraints according
to channel proximity and geographic localization of the cells. We can formally define such
scenarios as the following problem.

Definition 1. Frequency constrained minimum span assignment problem (F-CAP):
Let V be a set of labels representing the radio transmitters, and T a constraint matrix, where
each element T (u, v) consists of a set of positive integers where u, v ∈ V , T (u, v) = T (v, u)
and T (u, u) = ∅. A feasible channel assignment for this scenario is a vector a where a(v) is
the channel assigned to the point v ∈ V and, for a pair of distinct points u and v, we have
that |a(u)− a(v)| /∈ T (u, v). The span s of this assignment is equivalent to the maximum used
channel (s = maxv∈V a(v)). The problem consists of finding a feasible assignment a whose span
is the minimum possible.

F-CAP can be modelled as a graph coloring problem, as we show in following.
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Definition 2. Generalized graph coloring problem (GCP): Let G = (V,E) be an undi-
rected graph. For each edge uv ∈ E, there is a set t(uv) of values (where T =

⋃
uv∈E t(uv))

called the edge constraint t(uv) of values (if there is no constraint associated to the edge, then
t(uv) = ∅). A feasible coloring for G and T consists of a set a, where a(v) is the color assigned
to v and, for each edge uv, the condition |a(u)− a(v)| /∈ t(uv) holds. The objective is to find a
feasible assignment whose coloring span is the minimum possible.

It’s possible to add some more constraints to the graph colorings to model some other
scenarios. For example, in multicoloring, each vertex u in the graph has a weight cu which is
the number of different colors - in this situation, we have now that t(uu) 6= ∅, since there is
a separation among multiple colors in the same vertex. Each element a(u) of the assignment
will be a set of cu integers. In list coloring, each vertex u has a set l(u) of colors and the color
assigned to u must be in the set, that is, a(u) ∈ l(u).

3. Graph colorings as distance geometry problems

An important case of the GCP occurs when the set T (uv) of forbidden distances is composed
of contiguous integers. Based on the definition of the Molecular Distance Geometry Problem
given in [8], we can define the following problem.
Definition 3. Coloring Distance Geometry Problem (GCDGP): Given a simple weighted
undirected graph G = (V,E, d), with d : E → Z+, find an embedding a : V → N such that
|a(u)− a(v)| = duv for each uv ∈ E and maxv∈V a(v) is the minimum possible.

When, for all uv ∈ E, duv = 1, we have the classic graph coloring problem. Also, coloring a
complete graph can be done in linear time, since each vertex will have a different color. The
distance geometry (DG) problem with a complete graph where all distances are known can also
be solved in linear time [3]. The equality constraint of CDGP is applied in the context of channel
assignment, when two transmitters are communicating between each other - one channel will
be used for the downlink and the other for the uplink [11]. When the communication is only
one-way, these distances are, instead of a value which of the difference among colors of adjacent
vertices must be equal, a lower bound for that difference [10], as stated below.
Definition 4. Coloring Min-Distance Geometry Problem (CMDGP): Given a simple
weighted undirected graph G = (V,E, d), with d : E → Z+, find an embedding a : V → N such
that |a(u)− a(v)| ≥ duv for each uv ∈ E and maxv∈V a(v) is the minimum possible.

Since, in a wireless network, we can have multiple types of links, a more general model
includes both equality and inequality distance constraints, defined in the following model.
Definition 5. Mixed Coloring Distance Geometry Problem (MCDGP): Given a sim-
ple weighted undirected graph G = (V,E, d), with d : E → Z+, and a binary edge function
f : E → {0, 1}, find an embedding a : V → N such that, for each uv ∈ E, |a(u)−a(v)| ≥ duv if,
and only if, f(uv) = 0; or |a(u)−a(v)| = duv if, and only if, f(uv) = 1, and where maxv∈V a(v)
is the minimum possible.

4. Branch-Prune-and-Bound for MCDCP-Multi-List

Consider the MCDCP problem stated in the previous section. By adding list coloring con-
straints and multicoloring demands, we have the MCDCP-Multi-List problem that is stated
below.
Definition 6. Mixed List-Multicoloring Distance Geometry Problem (MCDCP-Multi-
List): Let G = (V,E) be an undirected graph. For each edge uv ∈ E, there is an integer value
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d(uv) and a binary value f(uv). For each vertex, there is a weight cv which is the number of
different colors that must be assigned to v and a list l(v) of possible colors that can be assigned
to v. A feasible coloring for G, c and d consists of a set A, where A(v) is the set of colors
assigned to v such that |A(v)| = cv; for all 1 ≤ k ≤ cv, A(v, k) is the k-th assigned color of
v, A(v, k) ∈ l(v) and, for each edge uv, |A(v, k) − A(u, h)| ≥ duv if, and only if, f(uv) = 0;
or |A(v, k) − A(u, h)| ≥ duv if, and only if, f(uv) = 1. The objective is to find a feasible
assignment whose coloring span is the minimum possible.

Algorithm 1 Branch-Prune-and-Bound for optimization version of MCDCP-Multi-List
function Branch-Prune-and-Bound(V, c, t, l, A,B, Ub, Lb,Block)

if all demands have been satisfied then
if span of assignment A is less than Ub then

B ← A; Ub← assignment of span A
if Ub = Lb then return B (optimal solution)
end if

end if
else for all v ∈ V

if demands of v have not yet been fully satisfied then
for all k ∈ l(v) do

if Block(v, k) = 0 then
Assign color k to v (and decrement current demand of v)
if current span of A is less than Ub then

for each vertex u such that cvu > 0 do
for all m ∈ l(u) do

if |k −m| ≤ cuv then Block(u,m)← Block(u,m) + 1
end if

end for
end for
Branch-Prune-and-Bound(V, c, t, l, A,B,M,Block)
for each vertex u such that cvu > 0 do

for all m ∈ l(u) do
if |k −m| ≤ cuv then Block(u,m)← Block(u,m)− 1
end if

end for
end for

end if
end if
Remove color k from v (and increment current demand of v)

end for
end if

end if
return B

end function

For solving this problem, we propose a branch-prune-and-bound algorithm. First, we choose
a vertex with demands that have not yet been fulfilled. Then, a color from the list associated to
the vertex is picked and, if it is not blocked for the vertex, it is added to the current assignment.
If all colors from the list are blocked, the node is pruned. Then we check if the span of the
current assignment is greater than or equal a given upper bound Ub. If it is, the node is cut,
otherwise, the method is recursively applied. The algorithm is then recursively applied, and
when all the demands are satisfied, we have a full feasible solution for the problem, and if its
cost is lower than Ub, then it becomes the new upper bound. To check for the blocked colors,
we use a matrix Block, with all elements initially set to 0, where Blockvk > 0 if color k is
blocked for v and Blockvk = 0 otherwise. When the current upper bound is equal to the given
lower bound Lb, we have the optimal solution for the instance. The algorithm can be executed
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more efficiently when good bounds (a upper bound found by a heuristic and a lower bound
found by a linear relaxation, for example) are given. Pseudocode for the B&P&B is given in
Algorithm 1.

5. Computational experiments

The Branch-Prune-and-Bound algorithm was implemented in C language and executed in a
computer equipped with a Intel Core i7 processor (3.4GHz) and 12GB of RAM. Some instances
were generated with n vertices (n ∈ [4, 10]), where we derived scenarios for problems CMDGP-
List, MCDGP-List (with distinct and equal lists), CMDGP-Multi-List and MCDGP-Multi-List.

The results of the experiments are given in Table 1 and Figure 2. The multicoloring instances
are harder to solve (since, for each color demand, we are essentially duplicating the vertex),
so the time needed to obtain the optimal solutions for n ≥ 7 in these problems was too high.
When equal distances are allowed in the problem, the runtime is lower, since there are less
options for assigning colors that respect equality constraints. However, when we introduce
equal lists, the time increases, since each vertex has more options now.

Table 1: Results for the Branch-Prune-and-Bound algorithm for generated instances of various
types and sizes. Column |V| indicates the number of nodes in the graph; column SP gives the
coloring span; column BND is the number of cuts by bounding; column PRN is the number of
cuts by pruning; column SOL is the number of solutions and column T is the total CPU time
for the algorithm.

CMDGP-List MCDGP-List MCDGP-List (Equal Lists)
|V| SP BND PRN SOL T SP BND PRN SOL T SP BND PRN SOL T
4 7 1165 280 1 0.000 7 1165 280 1 0.000 4 6066 2301 2 0.000
5 8 10174 6385 1 0.000 8 10174 6385 1 0.000 5 147910 81783 2 0.020
6 10 305652 2875327 2 0.160 10 72589 109671 2 0.070 6 2175875 1731638 5 0.580
7 13 3759459 84146237 3 4.630 15 352338 4421436 1 2.390 9 97921297 164055357 4 42.950
8 13 73343425 1708180121 3 112.420 13 73343425 1708180121 3 86.890 9 535223979 915288021 4 301.170
9 13 557401766 450263944 3 877.640 - - - - - - - - - -

Running time for the B&P&B algorithm
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Figure 2: Number of vertices times running time for the B&P&B algorithm and problems
used.

CMDGP-Multi-List MCDGP-Multi-List
|V| SP BND PRN SOL T SP BND PRN SOL T
4 7 4151 1191 1 0.000 7 1907 42714 1 0.000
5 10 2722793 3400106 3 0.560 10 508274 11309799 3 1.210
6 10 18391637 136594416 4 18.940 10 3575337 91939693 4 8.750
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6. Concluding remarks

In this work, we presented some graph coloring models with distance constraints which arise
in channel assignment planning in cellular networks. These problems can be seen as the posi-
tioning of color points according to the distances of the vertices, so it’s possible to solve them
as distance geometry problems using branch-prune-and-bound method.

Ongoing research includes applying other algorithmic strategies to determine lower and upper
bounds for the problem so the bounding occurs faster, analyzing the problem structure to make
the pruning more effective, and applying these strategies to both real and artificial benchmark
instances.
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1. Background

In this section, we introduce the background on Delaunay sets, their uniformly bounded trian-
gulations, and functionals on such triangulations.

1.1 Delaunay Sets

X ⊆ Rd is a Delaunay set if there are positive constants r < R such that (I) every open ball
of radius r contains at most one point of X, and (II) every closed ball of radius R contains at
least one point of X. Hence, X has no tight cluster and leaves no large hole.

1.2 Delaunay triangulations

Following the original idea of Boris N. Delaunay, we consider d-simplices with vertices from X
such that the open ball bounded by the (d − 1)-dimensional circumsphere contains no points
of X. We call such d-simplices empty. Here, it is convenient to assume that X is generic in
the sense that no d + 2 points in X lie on a common (d − 1)-sphere. Under this assumption,
the empty d-simplices fit together without gap and overlap.

Theorem 1 (Delaunay Triangulation Theorem [2]). Let X be a generic Delaunay set in Rd.
The collection of empty d-simplices together with their faces form a triangulation of X, com-
monly known as the Delaunay triangulation, Del(X).

∗This research is partially supported by the Russian Government under the Mega Project 11.G34.31.0053, RFBR grant
11-01-00735, DMS 1101688, and the European Science Foundation (ESF) under the Research Network Programme.
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1.3 Uniformly Bounded Triangulations

Let X be a generic Delaunay set in Rd, and let T be a triangulation of X. This means that T
is a simplicial complex with vertex set X whose underlying space is Rd. T is called uniformly
bounded if there is a real number q = q(T ) such that the radius of the circumsphere of every
d-simplex in T is smaller than or equal to q. It follows that no edge of T is longer than 2q.
Note that the Delaunay triangulation of X is uniformly bounded with q = R.

1.4 Functionals

Let Sd be the set of all d-simplices in Rd, including degenerate ones. We are interested in
functionals that have constant upper and lower bounds for the simplices that arise in uniformly
bounded triangulations of Delaunay sets. For other degenerate simplices we also allow infinity
as a value.

Definition 2. Let E be the class of functionals F : Sd → R for which there are constants
e = e(r, q, d) and E = E(r, q, d) such that e ≤ F (σ) ≤ E for all d-simplices σ with edges of
length at least 2r and radius of the circumsphere at most q.

1.5 Densities

We define the density of a functional on a triangulation by taking the lower limit over a growing
ball, of the sum of values over all d-simplices in the ball divided by the volume of the ball:

f(T ) = lim inf
α→∞

1
V ol(Bα)

∑
Bα⊇σ∈T

F (σ). (1)

1.6 Subclasses

We are interested in two subclasses of functionals, G ⊆ F ⊆ E , which we now introduce. To
define F , let Y be a generic set of d+ 2 points in Rd such that no point lies inside the convex
hull of the others. The non-degenerate d-simplices spanned by the points cover the convex hull
twice; see Radon [10]. Indeed, we can split them into two collections such that each forms
a triangulation of Y : the Delaunay triangulation, D = Del(Y ), and the other triangulation,
T . Changing one triangulation into the other is a flip, a name motivated by the planar case
in which it replaces one diagonal of a convex quadrilateral with the other. We give the flip a
direction, leading from T to D. Let now F be a functional, let ΣT be the sums of F (σ) over
all d-simplices in T , and define ΣD similarly.

Definition 3. The class F consists of all functionals F ∈ E for which ΣD ≤ ΣT .

In R2, the extra property of functionals in F suffices to prove our main result. In Rd, for
d ≥ 3, we need more structure. The reason is the existence of triangulations that cannot be
turned into the Delaunay triangulation by a sequence of directed flips; see [5] for finite examples
in R3. Such examples do not exist in R2; see [7].

Let now Y be a finite set of points in Rd. As before, we assume that Y is generic. Let
T ′ be a simplicial complex with vertex set Y , but note that we do not require that T ′ be a
triangulation of Y . For example, we could start with a triangulation of Y and construct T ′ as
the subset of d-simplices that do not belong to the Delaunay triangulation together with their
faces. Let D′ be the subset of simplices in Del(Y ) contained in the underlying space of T ′.
Finally, let ΣT ′ be the sum of F (σ) over all d-simplices in T ′, and define ΣD′ similarly.

Definition 4. The class G consists of all functionals F ∈ E for which ΣD′ ≤ ΣT ′.
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The condition for F to belong to G is at least as strong as that for F to belong to F , which
implies G ⊆ F .

2. Results

2.1 Main Theorem

The main result of this paper is an extension of optimality results for Delaunay triangulations
from finite sets to Delaunay sets, which are necessarily infinite.

Main Theorem 5. Let X be a Delaunay set in Rd.

(i) In R2, F ∈ F implies f(Del(X)) ≤ f(T ) for all uniformly bounded triangulations T of
X.

(ii) In Rd, F ∈ G implies f(Del(X)) ≤ f(T ) for all uniformly bounded triangulations T of
X.

2.2 Implications in the Plane

There are many functionals on triangles that are known to be in F . Applying the Main Theorem
thus gives many optimality results for Delaunay triangulations of Delaunay sets.

Corollary 6. Let σ be a triangle in R2, with edges of length a, b, c, let c1 > 0 and c2 ≥ 1 be
constants, and consider the following list of functionals:
F1(σ) = Circumradiusc1(σ); F2(σ) = Circumradiusc2(σ)·Area(σ); F3(σ) = −Inradius(σ);

F4(σ) = (a2 + b2 + c2)/Area(σ); F5(σ) = (a2 + b2 + c2) · Area(σ); F6(σ) = ||Centroid(σ) −
Circumcenter(σ)||2 ·Area(σ).

Then fi(Del(X)) ≤ fi(T ) for every Delaunay set X ⊆ R2, for every uniformly bounded
triangulation T of X, and for 1 ≤ i ≤ 6.

2.3 Implication in d Dimensions

We have one example of a functional on d-simplices that is in G, namely the extension of F5
to three and higher dimensions. Writing a1 to ak for the lengths of the k =

(d+1
2
)
edges of a

d-simplex σ, we define FR(σ) = V ol(σ)
∑
i a

2
i ; see also [1]. Rajan proved that for finite sets in

Rd, the density of FR attains its minimum for the Delaunay triangulation. We extend his proof
to show that FR belongs to G. With this, we get another consequence of the Main Theorem.

Corollary 7. We have fR(Del(X)) ≤ fR(T ) for every Delaunay set X ⊆ Rd and for every
uniformly bounded triangulation T of X.
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1. Introduction

From known distance values for pairs of atoms in a molecule, it is possible to formulate an
inverse problem called Molecular Distance Geometry Problem (MDGP) [1, 5] which consists
of finding a 3-D conformation for the molecule such that it satisfies the distance constraints.
Such data usually come from chemical knowledge (like atomic bond lengths and bond angles)
combined with a physical experimental method called Nuclear Magnetic Resonance (NMR) [3].
With additional assumptions, Lavor et. al [5] proposed a discrete formulation for a subclass
of the MDGP, which is called Discretizable Molecular Distance Geometry Problem (DMDGP).
In addition, an efficient method was also proposed for solving this problem, the Branch-and-
Prune (BP) algorithm, which generates a binary tree with all possible solutions [5]. To make
this method faster, Nucci et. al [6] proposed another one which uses the BP algorithm more
than once, generating more than one tree, as shown in Section 2. Finally, Section 3 shows how
to use quaternions in order to make the method, proposed by Nucci et. al, even more efficient,
comparing it with the rotation matrix approach.

2. Multiple Realization Trees

Given a molecule M in a backbone-chain shape, with an order < on its set of atoms {1, . . . , n},
we can split it into an union of intervals in an increasing order like

M = M1 ∪M2 ∪ . . . ∪Mk, (1)

where Mj = [aj , bj ], a1 = 1, bk = n, 1 ≤ aj ≤ aj+1 ≤ n, bj − aj+1 ≥ 2 and j = 2, . . . , k − 1.
The whole molecule can be represented as the interval M = [1, n]. For example: let M = [1, 6]

∗The authors would like to thank to the brazilian research agencies CNPq and FAPESP for the financial support.
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be a molecule. So, it can be splitted into the union M = M1 ∪M2, where M1 = [1, 4] and
M2 = [2, 6].

1
2

3
4

5
6

This division motivates what Nucci et. al [6] called as the method of Multiple Realization
Trees (MRT). Before describing it, we give some important definitions. A Valid Realization
of a DMDGP instance M corresponds to a bijective embedding of it in R3 which satisfies the
distance constraints, i.e., a three-dimensional conformation for M . A Realization Tree, in our
case, is a binary-tree graph which represents, in a depth-first fashion, all the valid realizations
which solves the DMDGP. A Feasible Branch is the name we give for each of the branches of
a Realization Tree, i. e., each feasible branch represents one embedding of M in R3.

The MRT method applies the BP algorithm in each interval Mj , producing k realization
trees Tj . We denote by T the realization tree which represents all the feasible realizations for
throughout the DMDGP instance M . Back to our example, the BP method provides the trees
T1 and T2, as in the figures below.

1 2 3

4

4

Figure 1: Tree T1: 4 levels.

2 3 4

5

6

6

5

6

6

Figure 2: Tree T2: 5 levels.

It is necessary to merge all the trees following the same order of split (1), aiming to get
realizations of the whole molecule. The procedure is merging each branch from one tree to all
branches from the other, one at a time. We denote the tth branch of a tree Tp as Tp,t.

In order to produce mergeable trees, one has to assume that two consecutive intervals Mp

andMp+1 have, at least, three atoms in the intersection [6]. Consider, then, the two consecutive
trees Tp and Tp+1 relative to the previously mentioned intervals. As they have three levels of
intersection, we consider the tree Tp to be fixed, calling it Base Tree, and we move the other
tree Tp+1, which we name Sliding Tree, towards Tp using Euclidean transformations in order
to preserve lenghts and angles. Assume that the last three atoms of the base interval are i, j
and k, respectively ordered, and let Tx,y(z) be the generic notation for the position of the
atom z ∈ {1, 2, . . . , |Tx,y|} in the branch y of the binary tree x. Also, if the number of feasible
branches in a tree T is denoted by |T |, then the final number of feasible realizations of M ,
provided by the MRT method, is r, which is defined by the multiplication

r = |T1||T2| . . . |Tk| ≤ |T |.

Three Euclidean transformations are necessary to merge the arbitrary branches Tp+1,t and
Tp,q. The first one is a translation that makes Tp+1,t(i)→ Tp,q(i), shown in Figure 2.
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Tp,q(i)

Tp,q(j)

Tp,q(k)

Tp+1,t(i)

Tp+1,t(j)

Tp+1,t(k)

Tp,q(i)

Tp,q(j)

Tp,q(k)

Tp+1,t(j)

Tp+1,t(k)

Figure 3: First Euclidean transformation: a translation of both realized branches.

We also want to make Tp+1,t(j) → Tp,q(j), without losing what we have built with the
translation. Let us denote Ep = Tp,q(j)− Tp,q(i) and Ep+1 = Tp+1,t(j)− Tp+1,t(i) and let θ be
the angle between Ep and Ep+1. We apply a plane rotation of θ in the branch Tp+1,t, as one
can see in Figure 4.

Tp,q(i)

Tp,q(j)

Tp,q(k)

θ
Tp+1,t(j)

Tp+1,t(k)

Tp,q(i)

Tp,q(j)

Tp,q(k)

Tp+1,t(k)

Figure 4: Second Euclidean transformation: a plane rotation in terms of θ.

Finally, after one translation and one rotation, consider Fp = Tp,q(k) − Tp,q(j) and Fp+1 =
Tp+1,t(k)−Tp+1,t(j). We want to move the sliding branch Tp+1,t such that it satisfies Tp+1,t(k)→
Tp,q(k), without moving anything else which has been already transformed previously. We
define the rotation axis, whose attitude L is spanned by Tp,q(j) − Tp,q(i), and consider the
plane P, orthogonal to this axis. Let P = I3 − LLT be the matrix that gives the orthogonal
projection to P.
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Then, the projections of Fp and Fp+1 in P are, respectively,

Pp = PFp and Pp+1 = PFp+1.

Now, let ϕ be the angle between Pp and Pp+1. Thus, we rotate Fp+1 towards Fp in ϕ about
the axis spanned by L, as it is shown in Figure 5. So we do with the remaining structure.
Therefore, both realizations are connected and supposed to respect all original distance and
angle constraints.

P

Tp,q(i)

Tp,q(j)

Tp,q(k)

Tp+1,t(k)

Pp+1

Ppϕ

P

Tp,q(i)

Tp,q(j)

Tp,q(k)

Pp

Figure 5: Third transformation: a spatial rotation in terms of the projected angle ϕ.

Following this outline, all the trees are connected and their branches consist of feasible points
that solve the DMDGP. In addition, we remark that all rotations are computed using matrices.

3. Merging Trees with Quaternion Rotations

All general rotations in real 3-D space can be represented by an axis, spanned by a unitary
vector n, and an angle θ. Using this information, one can build the matrix Rn,θ which carries
out a general rotation and can be determined by using the matrix form of Rodrigues’ Rotation
Formula [7]

Rn,θ = I + sin(θ)J(n) + (1− cos(θ))J(n)2, (2)
where J(n) is a skew-symmetric 3× 3 - matrix generated by the elements of n as

J(n) =

 0 −n3 n2
n3 0 −n1
−n2 n1 0


Such rotation matrices need 37 arithmetic operations to be determined, according to Equation
(2), and 9 positions of memory to be stored. In addition, it is necessary to use more 15
operations to multiply it for a vector v we want to rotate, totalizing 52 arithmetic operations.

This work aims to propose a theoretical modification on the tools which are used to make ro-
tations on three-dimensional structures in order to decrease the storage space and, consequently,
the number of operations to accelerate this process. Our approach uses the Quaternion Algebra
H [4] to do that.

Consider the unit quaternion q = q0 + qv, where q0 ∈ R and qv ∈ R3. It is possible to prove
that there is an unique angle 0 ≤ θ ≤ π such that q0 = cos(θ) and ‖qv‖ = sin(θ). Then, we
can rewrite q = cos(θ) + u sin(θ), where u = qv

‖qv‖ [4]. The conjugate of q can be written as
q∗ = cos(θ) − u sin(θ) [4]. Now, the following outcome characterizes a quaternion rotation by
means of a linear operator[4].

Theorem 1 (Quaternion Rotation Operator). For a unit quaternion q = cos(θ) +u sin(θ), the
operator Rq : R3 −→ R3, whose action on the vector v ∈ R3 is given by Rq(v) = qvq∗, is a
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rotation operator which rotate vectors about the axis spanned by the unit vector u through an
angle 2θ in clockwise sense.

Explicitly, the action of Rq in a vector v ∈ R3 can be derived as the Rodrigues’ Rotation
Formula

Rq(v) = cos(2θ)v + (1− cos(2θ))pu(v) + sin(2θ)(u× v), (3)
where pu(v) = (u · v)u is the orthogonal projection of v in the direction of u.

First of all, one improvement we can realize on the use of quaternions is that it is easier to
encode a rotation in a unit quaternion than in an orthogonal matrix. Moreover, Equation (3)
shows that each quaternion rotation creates a local frame (v,pu(v),u × v) to represent the
rotated vector and, also, gives us a route on how to localize it in the space more easily.

On computational complexity, quaternion rotations require the storage of only four positions
instead of nine, necessary in the use of three-dimensional matrices. In addition, 25 arithmetic
operations are used to compute such rotations, fashioned such as in Equation (3). As we can
see, this number of operations is reasonably less than the one used in the matrix approach.
When considering more than one rotation, it seems to be even more efficient by saving space
and floating-point-arithmetic operations.

Therefore, we apply these ideas as efficient tools in the merging of BP-trees. According to
the MRT procedure described previously, we have to carry out two rigid rotations in the sliding
structure. For each one of them, it is necessary first to determine the cosine of the rotation
angle by using the usual dot product in R3, restricting the domain of the cosine function to the
range [0, π] in order not to allow it to reach the position determined by the angle 2π − θ since
both angles have the same cosine value. Moreover, the unitary vector which spans the oriented
rotation axis can be chosen by applying the usual cross product in 3-D Euclidian Space, whose
signal induces the orientation of the rotation, following the so-called Right-Hand Rule. Thus,
the order in the cross product really matters: indeed, the axis for a rotation of a vector x
towards another vector y is spanned by the vector x × y, while the axis for the rotation of y
towards x is spanned by the vector y × x. As they satisfy the relation of anticommutativity
y × x = −(x × y), the direction of the rotation is, therefore, encoded in the sign of the cross
product.

The first rotation is supposed to take Ep+1 into Ep, since they have the same origin. Thus, the
cosine of the angle and the unitary vector which spans the correspondent axis are, respectively,

cos(θ) = 〈Ep+1, Ep〉
‖Ep+1‖ ‖Ep‖

and n = Ep+1 × Ep
‖Ep+1 × Ep‖

. (4)

Using the parameters developed above, we associate the following quaternion element to such
rotation

qθ,n = cos( θ2) + n sin( θ2).

Then, employing the result displayed in Theorem 1, we apply the rotation in the sliding struc-
ture Tp+1,t

Tp+1,t(u)← Rqθ,n(Tp+1,t(u)), for u = 2, . . . , |Tp+1,t|, (5)
where |Tp+1,t| is the number of vertices in this feasible branch of the realization tree Tp+1.
Further, assume L = Ep/ ‖Ep‖, Fp = Tp,q(k) − Tp,q(j) and Fp+1 = Tp+1,t(k) − Tp+1,t(j).

The orthogonal projection matrix, associated to the plane P, is given by M = I3 − LLT , as
we have seen. Then, the projections are given by the vectors Pp = MFp and Pp+1 = MFp+1.
Analogously to (4), the second rotation is generated by the parameters

cos(ϕ) = 〈Pp+1, Pp〉
‖Pp+1‖ ‖Pp‖

and m = Pp+1 × Pp
‖Pp+1 × Pp‖

. (6)



124 Felipe Fidalgo and Jaime Rodriguez

After calculating them, we define the associated quaternion to the respective rotation by

qϕ,m = cos(ϕ2 ) + m sin(ϕ2 ).

Therefore, we rotate the sliding structure, again as in Theorem 1, by making

Tp+1,t(u)← Rqω,m(Tp+1,t(u)), for u = 3, . . . , |Tp+1,t|, (7)

concluding the merging of the two structures Tp,q and Tp+1,t.
There are two rotations in this approach. The first one fixes the first vertex of the sliding

structure and the second one fixes both the first and the second vertices. Then, compounding
both the rotations in only one and applying it in the sliding structure leads us to reach the
same resulting structure. It is reasonably easier and computationally cheaper to compose two
quaternion rotations than multiplying two rotation matrices [4, 2]. Using this, we can save
half of the storage space and carry out less than the half of arithmetic operations for the
transformation of each point.

As a conclusion, using quaternion rotations, instead of matrices, can bring improvements
either about computational time or about simplifying the method. We are in the process of
implementing these ideas in order to illustrate computationally the theoretical improvements.
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Abstract The Molecular Distance Geometry Problem (MDGP) has several attempts for its resolution, such as
those from the class of Geometric Build-up methods. This work deals with a new approach named
Updated T Algorithm. It consists on solving linear systems, with LU factorization, together with
the so-called re-initialization and a sequence of Euclidian transformations in order to build linear
systems with better-condition-number properties. Numerical experiments with PDB (Protein Data
Bank) intances are shown, comparing this method with one from the literature, aiming to bear out
this approach.

Keywords: Molecular Distance Geometry, UT Algorithm, Root-Mean-Square Deviation, Geometric Build-Up
Algorithms

1. Introduction

It is possible to obtain distance values corresponding to pairs of atoms in a molecule M from
a combination of chemical knowledge (such as bond angles and bond lengths) with Nuclear
Magnetic Resonance (NMR) data [5]. From them, we can formulate the Molecular Distance
Geometry Problem (MDGP) as MDGP Given an n - atom molecule M , consider the set SM
of known distances dij between pairs of atoms (i, j) ∈ {1, . . . , n}2. Is it possible to find a 3
- D conformation x1, . . . ,xn for M? This problem is NP-hard [4]. In this work, we present
a method to solve it with relatively low CPU time that brings evidences of the possibility of
treating uncertainties on distance data, which is still under investigation for a future work. It
is called Updated T (UT) Algorithm. Numerical experiments of tests with proteins are shown,
using the Root-Mean-Square Deviation (RMSD) as error estimator.

2. Updated T Algorithm

LetM be a molecule and SM its associate pairwise-distance set. The method starts by choosing
four non-coplanar atoms whose all distances between each other are known. It is reasonably
simple to determine coordinates for this subset, which are called Base Atoms (see, e.g., [2],
p. 325). If they are not found, stop. Let F be the set of the positioned atoms. Then, the
iterating process starts: let j be the undetermined atom and xj ∈ R3 the position the method
wants to find. It looks for a subset with four base atoms Bj = {xj1,xj2,xj3,xj4} ⊆ F whose
distances to j are in S. If it is not found, stop. The next step is called re-initialization: the

∗We want to thank to CNPq, CAPES and FAPESP (2011/11897-6) for financial support.
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four determined base atoms of the iteration have their positions changed in order to depend
only on the distances. This is done following the same procedure for the first four atoms and it
aims to avoid error accumulation from the iterative process of solving linear systems, as done
in [3]. The new base atoms are Bt

j = {yj1,yj2,yj3,yj4}, which are ilustrated in the figure.

xj1

xj2

xj3

xj4

yj1

yj2

yj3

yj4

Figure 1: The re-initialization process: changing the coordinates of the Base Atoms.

These new positions, together with the distances in SM , establish a quadratic system of
equations

‖yj1 − yj‖ = dj1, ‖yj2 − yj‖ = dj2, ‖yj3 − yj‖ = dj3 and ‖yj4 − yj‖ = dj4, (1)

where yj is the position of the undetermined atom in the transformed framework. The next
result is the core of the method: yj is calculated by the solution of a linear system to be
described in what follows.
Theorem 1 (Fidalgo, [3]). Let Bt

j = {yj1, yj2, yj3, yj4} be a set of base atoms for j whose
distances to it are all known. If yj is a solution for the quadratic system (1), then x =[
tj yTj

]T
, where tj = −‖yj‖

2

2 , is the unique solution of the linear system Ax = b with

A =


1 yTj1
1 yTj2
1 yTj3
1 yTj4

 and b =


d2
j1 − ‖yj1‖

2

d2
j2 − ‖yj2‖

2

d2
j3 − ‖yj3‖

2

d2
j4 − ‖yj4‖

2

 .
After calculating yj , the method ought to put it back to its position xj in the original

framework. For this, we work with rigid Euclidean transformations, also used by Wu et. al
[1, 6]. Consider the matrices X and Y , whose rows consists on the positions of the base atoms
xi and yi, respectively. Thus, the geometric center of both structures, represented by these
matrices, can be determined by

xc(k) = 1
4

4∑
i=1

X(i, k) and yc(k) = 1
4

4∑
i=1

Y (i, k) (k = 1, 2, 3).

Then, we work out the translation on Y below so that both structures have the same geometric
center

Y (i, j) = Y (i, j)− [yc(j)− xc(j)], (j = 1, 2, 3). (2)
The same translation is applied to the position yj we want to transform.

Finally, following Wu et. al [6], we have to find an orthogonal matrix Q so that the structure
of Y is rotated into X, in order to achieve the RMSD value between both matrices. This is
done by the resolution of the Orthogonal Procrustes Problem

min
s. to QTQ=I

‖X − Y Q‖F . (3)
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The matrix Q = UV T solves this problem. U and V are the orthogonal matrices of the Singular
Value Decomposition of the matrix Y TX [3]. Applying the same rotation to yj , we find the
position xj and include it in F . It follows a picture illustrating this and the outline of the UT
algorithm.

yj1

yj2

yj3

yj4

yj

xj1

xj2

xj3

xj4

xj

Figure 2: After a sequence of Euclidian transformations, the atom j is put back on its original
position.

Algorithm 1 Updated T Algorithm
1: Find four base atoms, determine x1,x2,x3 and x4 and let F be the set of determined atoms;
2: if They are not found then
3: return
4: end if
5: loop
6: For each unpositioned atom j, find four base atoms xj1,xj2,xj3 and xj4;
7: Re-initialize the base atoms into yj1,yj2,yj3 and yj4 and find the position yj (Theorem

1);
8: Put back yj to the original structure into xj and include xj in F ;
9: end loop

3. Computational Issues and Numerical Experiments

The implementation and the computational tests have been done using MATLAB in a computer
Intel Core i3, 3.07 GHZ processor and RAM memory with 4 GB. All the linear systems were
solved by using LU factorization with partial pivoting. We used a subgroup of the proteins
tested by Wu et al. [6] and Davis et. al [1], from the Protein Data Bank (PDB), and the
numerical experiments with the UT algorithm are compared to the Updated Geometric Build-
Up (UGB) Algorithm [1, 6] results. Both methods have similar outlines, but their cores consist
on resolutions of different linear systems. In addition, UT solves only one system per iteration
instead of four ones, as it is in UGB. For the tests, we used the RMSD as an error estimator

RMSD(X,Y ) = min
s. to QTQ=I

‖X − Y Q‖F√
n

, (4)

where the original and the calculated instances are stored as rows in the matrices X and Y ,
respectively.

A subset of the results for these instances is shown in Table 1. Such tests were carried
out using 6 Å̊ as the cut-off value for the distances. The first and second columns bring,
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respectively, the name of the tested PDB instance and its number of atoms, which are also
displayed in Figure 3. The third and fifth columns store CPU time for the UT and the UGB
methods, respectively. One can see that the first method exhibits better performance in all the
cases. Having less systems may save more time. Figure 3 also shows this fact. The last column
shows a relative time, when comparing the time values: it indicates an improvement average
of 60.78% for the UT. Finally, the fourth and sixth columns bring RMSD values for both the
methods. These values are precisely close to each other in all the tests. Then, UT is able to
solve an MDGP with the same accuracy order of UGB, but demanding less CPU time, what
is promising desirable.

PDB Name # atoms UT time (s) UT RMSD UGB Time (s) UGB RMSD Time(UT/UGB)
1ID7 189 4,74E-02 3,12E-09 8,27E-02 3,12E-09 57,32%

1FW5 332 7,19E-02 1,18E-08 1,19E-01 1,18E-08 60,42%
1JAV 360 7,66E-02 1,38E-07 1,26E-01 1,38E-07 60,70%
1MEQ 405 8,39E-02 6,39E-11 1,36E-01 6,42E-11 61,51%
1AMB 438 8,86E-02 8,22E-06 1,45E-01 8,22E-06 61,15%
1R7C 532 1,07E-01 8,39E-07 1,68E-01 8,38E-07 63,83%
1HLL 540 1,06E-01 1,59E-07 1,71E-01 1,59E-07 61,96%
1VII 596 1,12E-01 9,19E-07 1,92E-01 9,19E-07 58,55%
1HIP 617 1,13E-01 3,15E-09 1,95E-01 3,14E-09 57,98%
1ULR 677 1,24E-01 2,82E-09 2,09E-01 2,81E-09 59,20%
1KVX 954 1,61E-01 1,65E-06 2,77E-01 1,65E-06 58,19%
1VMP 1166 2,04E-01 1,97E-07 3,63E-01 1,97E-07 56,25%
1RGS 2015 3,11E-01 1,37E-08 5,63E-01 1,37E-08 55,23%
1BPM 3671 5,94E-01 5,08E-06 1,04E+00 5,08E-06 57,11%

Table 1: Numerical experiments of tests with PDB instances - 6 Å̊ cut-off

Figure 3: Graphic representation of the RMSD results for the computational tests with proteins
from the PDB.

4. Conclusions

Concluding, this work deals with the Updated T (UT) Algorithm which solves the Molecular
Distance Geometry Problem (MDGP) by applying a sequence of linear-system resolutions and
Euclidean rigid transformations based on Root-Mean-Square Deviation (RMSD) techniques.
It has shown as good numerical stability and accuracy as the Updated Geometric Build-Up
method (from the literature) does and has taken less CPU time to determine protein structures.
Such instances have been extracted from the Protein Data Bank (PDB). For future work, our
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Figure 4: Graphic representation of the time results for the computational tests with proteins
from the PDB.

main outlook is the aplication of our numerical method in order to treat noisy distances, i.e.,
sparse and inexact ones, through a stochastic modeling of the Molecular Distance Geometry
Problem (MDGP) by means of a Monte Carlo approach. In addition, we also need to make
a numerical complexity analysis and understand better the advantages and limitations of the
variable tj , specially in connection with error estimators aiming to quantify uncertainties in
UT, since there are some evidences that it would be suitable.
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Abstract A unit disk graph G is a graph whose vertices can be mapped to points on the plane and whose
edges are defined by pairs of points within unitary Euclidean distance from one another. The
recognition of unit disk graphs is no easy feat. Indeed, the fastest known algorithm to decide
whether a given graph is a unit disk graph is doubly exponential. In this paper, we introduce a
practical algorithm to produce certified answers to the question “is G a unit disk graph?” in either
way, for any given graph G. By imposing that the points’ coordinates belong to discrete sets of
increasing granularity, our method builds a sequence of trigraphs G′, i.e. graphs with mandatory
and optional edges, until either some G′ is found possessing properties which certify that G is a
unit disk graph, or the sequence of trigraphs has to be interrupted, certifying that G is not a unit
disk graph. The proposed method was actually implemented, and we were able to obtain our first
certificates for some small graphs.

Keywords: unit disk graphs, graph recognition, trigraphs, geometric algorithms

1. Motivation

A unit disk graph (UDG) is a graph whose n vertices can be mapped to points on the plane and
whose m edges are defined by pairs of points within Euclidean distance at most 1 from one
another. Alternatively, one can regard the vertices of a UDG as mapped to coplanar congruent
closed disks, so that two vertices are adjacent whenever the corresponding disks intersect. Unit
disk graphs have been widely studied in recent times due to their applications to wireless sensor
networks [1].

In the present paper, we consider the problem of recognizing unit disk graphs. Though a
YES answer can be verified in polynomial time assuming the Real RAM model, the size of
certificates comprising the coordinates of the disk centers may not be polynomially bounded
under the classic model of computation over finite strings [4]. Indeed, it is not known for the
time being whether the problem belongs to NP, and the fastest known recognition algorithm is
doubly exponential [5]. Since no practical algorithm is available, there are graphs with as few
as ten vertices which have never been proved as being (or not being) UDG [6].

∗Research partially supported by FAPERJ and CNPq.
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Figure 1: Graph conjectured [6] not to be a
UDG.

x∗

c∗1

c∗2 c∗3

c∗4

Figure 2: Graph that corresponds to the
lower bound for the approximation factor of
the algorithm introduced in [2] for minimum
(independent) dominating sets in unit disk
graphs.

A practical method to certify whether a graph is a UDG is of utmost importance. Indeed,
many of the existing bounds for approximation factors of algorithms for hard problems on unit
disk graphs are based on the fact that certain graphs are (or are not) UDG, but each one of
those graphs demanded their own ad-hoc geometric proof. For an example, [6] conjectures that
the graph in Figure 1 is not a UDG. The correctness of their conjecture would imply a decrease
from 3.8 to 3.6 in the maximum ratio (except for an additive constant) between the size of a
maximal independent set and the size of a connected dominating set in any given UDG, and
that would immediately tighten the approximation factor of algorithms that estimate the size
of minimum connected dominating sets by computing maximal independent sets.

Another example was obtained in [2]. Denote by Gp,q the graph that has one p-clique such
that one of its vertices is adjacent to q pendant vertices, and each of the other p− 1 vertices is
adjacent to a degree-2 vertex that in turn is a pendant vertex of an induced K1,5. The graph
G5,4 of Figure 2 is known to be a UDG (a geometric model with only integral coordinates is
available [3]) and is the worst known instance for an algorithm that approximates the minimum
(independent) dominating set of a unit disk graph, establishing a lower bound of 4.8 for the
approximation factor of that algorithm. On the other hand, the graph G9,4 is known not to
be a UDG (the proof is based on numerous geometric lemmas), and this fact is central in the
proof of the (upper bound for the) approximation factor of 44/9 = 4.888 . . . of such algorithm.
Further knowledge about the family Gp,q, closing the gap between what is currently known to
be a UDG (graph G5,4) and what is known not to be a UDG (graph G9,4), would immediately
tighten the existing bounds on the approximation factor of the aforementioned algorithm.

The difficulty in developing a certifier for unit disk graphs, even a “brute force” one, comes
from the fact that the solution space — namely (R2)n — is uncountable. In the present paper,
we formulate a strategy to reduce the solution space to a countable, finite set, whose granularity
is subsequently refined, leading to a YES/NO certificate in many cases. An inconclusive answer,
however, may possibly be obtained.

2. The proposed model

The central idea of our strategy is to discretize the solution space by defining an enumerable
set of 2-dimensional coordinates where the points associated to the input graphs’ vertices may
be placed at. For a positive ε ∈ R, consider the set Nε := {x ∈ R | x = dε, d ∈ N}, and let
Cε := Nε ×Nε be a discrete set of 2-dimensional coordinates. We call such Cε a mesh and we
say Cε1 is thinner than Cε2 if ε1 < ε2. Clearly, any subset of points Mε ⊆ Cε determines a unit
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disk graph G whose vertices are pairwise adjacent whenever their corresponding points in Mε

are within unitary distance of one another. We say Mε is an ε-discrete model for G.

Trigraph embodiments. Given a mesh Cε and a set Mε ⊆ Cε of n points, we define the
trigraph GMε = (V,E1 ∪E2) as the graph whose vertex set V corresponds to the points in Mε,
and whose edges can be partitioned into E1, the set of mandatory edges, and E2, the set of
optional edges. A mandatory edge is associated to a pair of points v, w ∈ Mε that are at
distance d(v, w) < 1 − ε

√
2 from one another. An optional edge, on its turn, is associated to

a pair of points v, w ∈ Mε satisfying 1 − ε
√

2 ≤ d(v, w) ≤ 1 + ε
√

2. We say GMε is a trigraph
embodiment of graph G(V,E) if, and only if, E ⊆ E1 ∪ E2 and E1 \ E = ∅, i.e. all edges of G
are either mandatory or optional edges in GMε , and no edge that does not belong to G appears
as a mandatory edge in GMε .

If GMε is a trigraph embodiment of G, and GMε has no optional edges, then Mε is a unit
disk model for G, hence G is certainly a UDG. Moreover, if GMε does have optional edges,
but all optional edges in GMε correspond to pairs of adjacent vertices in G, then G is a UDG
as well. (The same goes for the case where all optional edges in GMε correspond to pairs of
non-adjacent vertices in G.) This is the core of the YES certificates produced by our method.

It can be shown that, if G is a UDG, then G admits a trigraph embodiment GMε , for all
ε > 0. Conversely, if, for some ε, there is no possible trigraph embodiment GMε for G, then G
is not a UDG. Our NO certificates come from this fact.

Our strategy to recognize unit disk graphs can therefore be summarized in the following steps:

INPUT: A connected graph G = (V,E)
OUTPUT: YES, if G is a UDG; NO, if it is not a UDG; or INCONCLUSIVE.

1. Choose a value for ε and consider the corresponding mesh Cε.

2. For each possible discrete model Mε ⊆ Cε with |M | = |V |, obtain the respective trigraph
GMε = (V,E1, E2).

(a) If E = E1 then a disk model was found for G, hence G is a UDG. Return YES.
(b) If E ⊆ E1 ∪ E2 and E1 \ E = ∅, then GMε is a trigraph embodiment for G.

3. If a trigraph embodiment was found for G, then let ε ← ε/2. If ε is still greater than
some previously defined constant εmin, then restart the algorithm with the new value
for ε; otherwise, return INCONCLUSIVE.

4. If no trigraph embodiment was found for G, then G is not a UDG. Return NO.
Note that, in spite of the apparent infinite number of possible discrete models, we may

assume that G is connected1, so any model of G must be enclosed in a disk of diameter 2|V |.
Notice also that, whenever the algorithm produces a conclusive answer, then an appropriate

certificate has been found. However, as discussed in Section 4, the input graph may not be a
UDG, but still be such that, no matter how thin the mesh is, a trigraph model can always be
found, leading the algorithm to an inconclusive answer.

3. Results

To validate our proposed model, we implemented it using the Python language. Our implemen-
tation includes some nice refinements aimed at reducing the number of candidate placements
of each vertex in the considered mesh, such as

1Trivially, a graph is a UDG if and only if all its connected components are UDG.
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(i) taking the maximum and minimum distances between pairs of vertices as input;

(ii) taking the maximum and minimum angle between two vertices with respect to a third
one as input;

(iii) allowing the imposition of a fixed circular order of vertices around a reference point.

Naturally, such features can only be used if some previous geometric analysis determines such
distances and angles constraints. With this preliminary implementation, we could already
correctly classify some small graphs as being (or not being) UDG.

4. Future directions

In spite of the nice results it has enabled us to obtain, the proposed method does presents some
limitations, one of which is disclosed by the following “pathological” example.

Let G be the K1,6 graph, which is known (by geometric methods) not to be a UDG. Our
procedure is doomed to give an inconclusive answer for G no matter how thin the mesh is. The
reason is that, for all ε > 0, there is always a trigraph embodiment GMε for G, in which the
center of the star and one of the leaves coincide (see Figures 3, 4 and 5).

A second weakness of the method is its worst-case time complexity, since the time demanded
to produce a certificate for certain graphs may be as long as unforeseeable.

Figure 3: Graph K1,6.

Figure 4: Discrete model for graphK1,6. The
circles are not the unit-diameter disks them-
selves, but rather represent their centers. The
two overlapping circles represent the centers
of coincident disks.

Figure 5: Trigraph corresponding to Figure 4.

The previous observations lead to the following open questions, which are currently under
investigation.

1. Is it possible to characterize such “pathological” graphs, those which deny our method
any chance of recognizing them in either way?
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2. Is it possible to modify our method so that it always stop with a conclusive question
within a reasonable, predetermined time?

Notwithstanding the open questions above, there seem to be several promising ways our
method can be improved upon. We list some of them below.

The exhaustive enumeration of possible trigraph embodiments for G can be achieved by
a backtracking-based approach. First, a sequence v1, . . . , vn of vertices of G must be
determined, in such a way that the subgraph Gk of G induced by v1, . . . , vk is connected
for all k ∈ {1, . . . , n}. Each vertex vk is then positioned, one at a time, at some point of
the mesh, in such a way that the set of already occupied points of the mesh (including
the one assigned to vk) defines a trigraph embodiment for Gk. By doing so, the search
space for trigraph embodiments for G shall decrease considerably.

By the end of the k-th iteration of the algorithm, after some trigraph embodiments
were found, the value of ε is halved, so each former grid point p gives rise to four grid
points p1, p2, p3, p4 to be considered (as possible vertex locations) during the (k + 1)-
th iteration. It shall now be possible to eliminate at once from the list of candidate
locations for a vertex v all points pi corresponding to a point p that was not occupied
by v in any trigraph embodiment obtained in the k-th iteration. By so doing, the search
for trigraph embodiments on the thiner mesh becomes limited to “refining” previously
obtained trigraph embodiments, instead of a search that would otherwise have begun
from scratch.

Proving geometric results such as “if G is a UDG, then G admits a disk model where
no two vertices are either vertically aligned, or horizontally aligned, or coincident” may
allow for the earlier elimination of a considerable number of discrete models, therefore
also speeding up the algorithm.
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1. Introduction

Taking keypoints of an object in a reference image and searching for similar keypoints in a
collection of candidate images is an important operation in image processing. The number
of keypoints in the reference image is usually quite small (10 . . 100), but the number of key-
points among the candidates can be very large (105 . . 107). Hence it is important to develop
efficient identification methods for neighbours of reference keypoints. This is the subject of the
present abstract. A recently developed similarity measure (based on dual trees and an oriented
complex-valued wavelet transform) has proved to be highly beneficial for multi-dimensional
signal processing [10]. This measure has the advantage over a commonly used former measure
[9] of the efficient matching of keypoint pairs in a rotationally invariant way. In order to pre-
serve rotational invariance, each reference keypoint must be represented by a set of m cyclic
vectors of m dimensions, where m is usually about 200. This multiplicity of vectors means that
a non-Euclidean metric must be used to calculate distances between reference and candidate
keypoints, which is computationally burdensome for image processing projects of practical size.
We explain how this rotationally invariant operation can be transformed into the well-known
k-nearest neighbours problem (KNN) with the Euclidean distance metric. This is of inter-
est since there exist fast approximation algorithms for KNN, some of which we describe and
discuss.

Let m be the dimension of both the reference and candidate keypoints, both having real-
valued elements. Let Y denote the set of initial reference keypoints, with elements denoted by
yp = (yp1 , y

p
2 , . . . , y

p
m)T , p ∈ {1, 2, . . . , r}, where r = |Y |. Let yp,q, q = 1, 2, . . . ,m; denote the

complete set of m keypoints that represent the pth reference, being cyclic versions of yp:

yp,q = (yps(q,0), y
p
s(q,1), . . . , y

p
s(q,m−1))

T , p ∈ {1, 2, . . . , r}, (1)

where, for any t, u ∈ Z+, s(t, u) = t+ u, if t+ u ≤ m and = t+ u (mod m), otherwise.
LetX ′ denote the set of candidate keypoints, with elements denoted by xi = (xi1, xi2, . . . , xim)T ,

i ∈ {1, 2, . . . , n′}, where n′ = |X ′|. The metric for calculating the distance between any candi-
date keypoint xi ∈ X ′ and any initial reference keypoint yp ∈ Y is:

d′ip = min
q∈{1,2,...,m}

d(xi, yp,q), (2)

∗Hugo do Nascimento is partially sponsored by a Scholarship of Research Productivity from CNPq (309463/2009-2).
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where d(a, b) = ||a− b||2 = (
m∑
i=1

(ai− bi)2)
1
2 , the `2 norm (Euclidean distance) between a and b.

Let Y ′ = {yp,q | p = 1, 2, . . . , r; q = 1, 2, . . . ,m}. Suppose X ′ and Y are given and Y ′ has
been constructed from Y . The original image processing operation is denoted by Pk(X ′, Y ′).
For given positive integer k ≤ n′, Pk(X ′, Y ′) involves finding the k nearest neighbours in X ′

for each reference keypoint in Y according to the metric d′ip.
The main contribution of the present abstract is to suggest that Pk(X ′, Y ′) can be solved by

formulating it as KNN: given a collection of candidate keypoints, build a data structure which,
given any reference keypoint, reports the k candidate keypoints that are closest to the reference
keypoint, with all data points being in a given metric space [8]. The metric in the space need
not necessarily be Euclidean distance although it is the one commonly used and it is used
here from now on. KNN is of major importance in similarity searching and has signification
application in many areas including: image processing, statistical measure estimation, machine
learning, data mining, data compression, information retrieval and pattern recognition.

We now explain a transformation that enables Pk(X ′, Y ′) to be performed by any KNN al-
gorithm with Euclidean distance. The basic idea is to construct a set of “candidate keypoints”,
based on cyclic versions of each candidate keypoint, in the same way that Y ′ was constructed
from Y . The motivation for this is that (2) is an awkward metric to evaluate, as it involves
m reference keypoints as well as a candidate keypoint. To avoid this, we deal with Y , the
set of initial reference keypoints rather than with Y ′. We augment X ′ by element cycling.
The augmentation means that each distance calculation involves just one initial reference key-
point and one candidate keypoint. Let xi,j , j = 1, 2, . . . ,m; denote the m keypoints that are
constructed from xi, i ∈ {1, 2, . . . , n′}, for the augmentation. The xi,j ’s are cyclic versions of
xi and are defined in the same vein as (1). That is, let xi,j = (xis(j,0), x

i
s(j,1), . . . , x

i
s(j,m−1))

T ,
j = 1, 2, . . . ,m, with s defined as in (1).

Let X = {x1,1, x1,2, . . . , x1,m, x2,1, . . . , x2,m, . . . , xn
′,1, . . . , xn

′,m} denote the augmented set of
keypoints constructed from X ′. The metric for calculating the distance between any candidate
keypoint xi,j ∈ X and any reference keypoint yp ∈ Y is:

dijp = d(xi,j , yp), i ∈ {1, 2, . . . , n′}; p ∈ {1, 2, . . . , r}, (3)

where d(a, b), once again, denotes the `2 norm, the Euclidean distance between vectors a and
b.

As usual, when minimising relative distance, the “1/2” power of Euclidean distance can be
neglected. Calculating dijp requires O(m2) time. (The m distances computed each require
approximately 2·m additions/subtractions and m multiplications and the sort of the distances
requires O(m· logm) time.) Furthermore, the fact that the candidate keypoints are rotated
leads to additional savings in computation.

The newly transformed image processing operation is denoted by Pk(X,Y ). It involves
finding the k nearest neighbours in X for element in Y according to the metric dijp. Note that
the neighbours returned must arise from distinct elements of X.

2. Problem Transformation

The transformation Pk(X,Y ) is the k-nearest neighbours problem (KNN). We show that
Pk(X ′, Y ′) and Pk(X,Y ) are equivalent.
Lemma 1. If x is a nearest neighbour of some yp ∈ Y ′ for P1(X ′, Y ′), then solving problem
P1(X,Y ) will produce a nearest neighbour that is the same distance from yp as x.
Proof. Suppose for some i ∈ {1, 2, . . . , n′}, xi = (xi1, xi2, . . . , xim)T ∈ X ′ is a nearest neighbour
of Y ′ produced by P1(X ′, Y ′). Suppose further, for some q ∈ {1, 2, . . . ,m}, yp,q = (ypq , y

p
q+1,
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. . . , ypm, y
p
1 , . . . , y

p
q−2, y

p
q−1)T ∈ Y ′ induces the minimisation in (2). That is,

d(xi, yp,q) = ((xi1 − ypq )2 + · · ·+ (xim−q+1 − ypm)2 + (xim−q+2 − y
p
1)2 + · · ·+ (xim − y

p
q−1)2)

1
2 . (4)

The expression in (6) can be rearranged so the y values appear in the order yp1 , y
p
2 , . . . , y

p
m:

d(xi, yp,q) = ((xim−q+2 − y
p
1)2 + (xim−q+3 − y

p
2)2 + · · ·+ (xim−q+1 − ypm)2)

1
2 . (5)

Let j = m − q + 2 and xi,j = (xim−q+2, x
i
m−q+3, . . . , x

i
m, x

i
1, x

i
2, . . . , x

i
m−q+1)T . Then xi,j ∈ X

is a neighbour of yp that is distance d(xi, yp,q) = d(xi,j , yp) from yp. Thus, xi,j is a nearest
neighbour of yp that will be produced by solving P1(X,Y ).

Lemma 2. If x is a nearest neighbour of some yp ∈ Y for P1(X,Y ), then solving P1(X ′, Y ′)
will produce a nearest neighbour that is the same distance from yp as x.

Proof. Suppose for some i ∈ {1, 2, . . . , n′} and j ∈ {1, 2, . . . ,m}, xi,j = (xij , xij+1, . . . , xim, xi1,
. . . , xij−2, x

i
j−1)T is a nearest neighbour of yp found by solving P1(X,Y ). That is,

d(xi,j , yp) = ((xij − y
p
1)2 + · · ·+ (xim − y

p
m−j+1)2 + (xi1 − y

p
m−j+2)2 + · · ·+ (xij−1 − ypm)2)

1
2 . (6)

The expression in (6) can be rearranged so the x values appear in the order xi1, xi2, . . . , xim:

d(xi, yp,q) = ((xi1 − y
p
m−j+2)2 + (xi2 − y

p
m−j+3)2 + · · ·+ (xim − y

p
m−j+1)2)

1
2 . (7)

Let q = m − j + 2 and yp,q = (ypm−q+2, y
p
m−q+3, . . . , y

p
m, y

p
1 , y

p
2 , . . . , y

p
m−q+1)T . Then xi ∈ X ′ is

a neighbour of yp,q ∈ Y ′ that is distance d(xi,j , yp) = d(xi, yp,q) from yp. Furthermore, xj is a
nearest neighbour of yp that will be produced by solving problem P1(X ′, Y ′).

Theorem 3. Pk(X ′, Y ′) and Pk(X,Y ) are equivalent.

Proof. In order to find the k nearest neighbours (for k > 1), the procedures in Lemmas 1 and
2 can be repeated k times as follows. Whenever xi,j ∈ X is established as a nearest neighbour,
the keypoints xi,j , for all j ∈ {1, 2, . . . ,m}, are removed from X. Then the procedures to find
a new nearest neighbour are repeated for the set X\{xi,j | j = 1, 2, . . . ,m}. This avoids the
alias problem of two cyclic version of a vector in X being accidentally identified as two separate
nearest neighbours. Thus, the 1-neighbour (closest neighbour) procedure is performed k times.
The above arguments can be repeated for each p ∈ {1, 2, . . . , r}.

3. Algorithmic Solutions

Note that X is independent of r, the number of reference keypoints. Once X has been created,
it remains fixed for all future reference keypoints and its construction cost can be amortised
over Y . This will be advantageous whenever r is relatively large and new reference keypoints are
inserted. One way to perform P (X,Y ) is by “brute force”, using the following exhaustive search
algorithm: The time complexity of ES(X,Y ) is O(m·n·r + n·r· logn), where n = m·n′ = |X|

ES(X,Y): Create the augmented candidate keypoint set X ′. For each reference keypoint
p ∈ Y : Calculate dijp for all i ∈ {1, 2, . . . , n′} and j ∈ {1, 2, . . . ,m}; Sort the distances
just calculated; Select the first k distinct candidate keypoints in X based on these distances.

is the number of candidate keypoints. Due to the special structure of X ′ the algorithm can be
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speeded up by parallel computing. We shall discuss data structures that can reduce this huge
time complexity.

When m is relatively small, the metric space (X, dijp) can be fruitfully partitioned by using
k-d trees [3, 6] in order to compute distances only within specific nearby volumes. However,
the performance of k-d tree-based algorithms declines as m increases. If the metric is non-
Euclidean, or if m is relatively large, ball trees [12] often provide more useful results in practical
situations [5]. Although distance sorting is not an issue with the hierarchical tree decomposition
algorithms discussed so far, the fact that their space requirements are exponential in m is a
major concern. Cover trees have been developed to address this difficulty and to enable fast
approximate KNN searches. Indeed, cover tree-based algorithms use implicit representation to
keep track of repeated points and thus require only O(n) space, independent of any assumptions
regarding m [2].

Like the other hierarchical tree decomposition algorithms mentioned, cover trees allow for
KNN searches in O(b·logn) time where b is a constant derived from m. However, when m is
relatively large, b is of significant size and must be taken into account in complexity analysis,
implying that performance declines with increasing m. But cover tree algorithms are unique
among tree-based methods in that a theoretical bound on b is available. This bound is c12,
where c is an expansion constant for exact algorithms and a doubling constant for approximation
algorithms [2], leading to a bound on search time of O(c12· logn). Although cover trees provide
reasonably fast KNN searches, the speed comes with the additional cost of maintaining the data
structure. In exhaustive search, the time to add a new point to the dataset can be neglected
because order does not need to be preserved, but in a cover tree it can take up to O(c6· logn)
time. Samet [11] provided a survey of hierarchical tree decomposition algorithms for KNN.

Practical data for Pk(X ′, Y ′) often has dimensions: m ≈ 200, n ≈ 105 . . 107, k ≈ 50 and
r ≈ 10 . . 100. Clearly, the strategy of transforming the image processing operation and solving
Pk(X,Y ) with such dimensions will be computationally effective only if approximation algo-
rithms are used, possibly in conjunction with parallel computing. “Approximation” in the
context of KNN implies, given y ∈ Y and an approximation parameter ε > 0, find elements
x1, x2, . . . , xk ∈ X such that d(xi, y) ≤ (1 + ε)·d(X, y), i ∈ {1, 2, . . . , k} and xi is the ith nearest
neighbour of y. The notion of approximation is appealing here as it has been found for many
practical datasets that the approximately nearest neighbours identified are very close to the
exact ones and the differences are often unimportant [4]. Tree cover approximation algorithms
show promise in this regard. Indeed, Beygelzimer et al. [2] provide such an algorithm that is
of practical interest. It has a time requirement at most c12 · log ∆ + (1/ε)O(log c), where c is the
doubling constant and ∆ is the aspect ratio (the ratio of the largest to the smallest interpoint
distance). The space bound is O(n), which is independent of c.

Locality-sensitive hashing (LSH) is another suitable KNN approximation method where m
is probabilistically reduced when it is relatively large [7]. The basic idea is to hash the input
items using several hash functions so that similar items are mapped to the same buckets with
much higher probability than for dissimilar items (the number of buckets being significantly
smaller than n). When the reference keypoints are included, one can then determine their near
neighbours by hashing a reference keypoint and retrieving the elements in its buckets.

Gionis et al. [4] and Andoni and Indyk [1] have developed fast LSH approximation algorithms
that can be used to solve Pk(X,Y ) when m and n are both relatively large. Their methods are
based on LSH families that are simple, easy to use and can accommodate the situation where
new reference keypoints are inserted dynamically. The Gionis et al. algorithm is O(m·d1/(1+ε)).
The authors solved particular KNN problems with n = 270, 000, m = 64 and k = 10, in better
than an order of magnitude faster than tree-based algorithms, requiring O(n) space and with
less than 4% error. Andoni and Indyk [1] describe an LSH-based algorithm for m-dimensional
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Euclidean space that is provably near-optimal in the class of the LSH algorithms regarding the
separation of collision probabilities of close and far points.

4. Computing

Suppose for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, xi,j = (xij(1), x
i
j(2), . . . , x

i
j(m))

T is one
of the candidate keypoints and for some p ∈ {1, 2, . . . ,m}, one of the reference keypoints is
represented by the vector yp = (yp1 , y

p
2 , y

p
3 , . . . , y

p
m−1, y

p
m)T . Suppose further, that for a given

non-negative finite real number ε:

|xij(q) − y
p
q | ≤ ε, ∀ q = 1, 2, . . . ,m. (8)

This relationship implies dijp ≤
√
m·ε. Rather than performing all them calculations necessary

to calculate dijp, one might instead perform element-to-element comparisons of xi,j and yp based
on (8). During the comparison process, whenever (8) does not hold xi,j could be eliminated
from further consideration as a potential k-nearest neighbour of yp. As with the doubling
constant for cover trees, the bound ε could be increased until k candidate keypoints have been
identified.

5. Conclusion

The transformation introduced above may be viewed as a means of linking the two classes of
k-nearest neighbours problems, so that theoretical results for P (X,Y ) (for which relatively fast
approximation algorithms exist) can be extended to P (X ′, Y ′). No claims are made, however,
as to the computational utility of this transformation. The authors are in the process of
investigating its usefulness for rotation-invariant image processing operations of practical size
via approximation algorithms and parallel computing.
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Abstract Exploratory Multidimensional Data Analyses were used to manage two components of a naming
test for studying lexical access in aphasic patients, i.e., the naming agreement of images and
age of acquisition of the names themselves from an original international test. In order to be
reliable the images should be easily and unequivocally named by any subject using the same word.
Theoretical assumptions about word learning states that words acquired later tend to be the first
to be lost due to brain damage in aphasia. Thus, these two variables are important predictors of
the patient’s word retrieval. We first selected the images according to normal judges recognition
agreement; then, to range them based on their primitiveness, these images were submitted to two
sets of judges, that had to answer according to two different scales. Data were analyzed with
several exploratory multidimensional techniques, including Simple and Multiple Correspondence
Analyses, Principal Component and Multiple Factor Analyses. A comparison suggested that no
mayor differences existed due to the two scales’ differences.

Keywords: Chi-square Distance, Correspondence Analysis, Factor Analysis, Linguistics, Aphasia

1. Introduction

This study is the continuation of a previous one [4] and concerns the evaluation of a set of 260
images [8] internationally used to test the lexical access in aphasia, i.e. the loss of some abilities
related to language production and/or comprehension due to brain damage. The test, that aims
at measuring to what extent the disease affects the word retrieval, is based on the recognition
of familiar objects submitted as images to the patients and their consequent verbalization.
In order to be reliable, we considered that a selection of these images ought to be done to
suit the Brazilian reality and we based it on two criteria: i) the images should be easily and
unequivocally recognizable, and ii) the primitiveness of the word, say its age of acquisition,
should be measured. Indeed, it is theoretically assumed (based on word learning) that words
acquired later tend to be the first to be lost in aphasic patients affected by brain damage. Thus,
these two characters are important predictors of the patient’s word retrieval. Thus, we selected
randomly three groups of non-affected people to act as judges, and asked one to identify the
images and the other two to estimate the degree of primitivity of the corresponding names. As
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our study was based mainly both on judges and scale evaluation, we show in the following how
we dealt with the judges’ reliability and the scale definition.

2. The data

For the selection of the images, all of them (260) were submitted to a panel of 38 judges
randomly selected among non-affected people. The answers have been coded as 1 =
recognized, 0 = not recognized. From this selection, 161 images resulted.

To measure primitiveness, we asked 128 non-affected judges to estimate how primitive
were the 161 represented objects, according to their personal experience. This estimation
was based on two different scales: i) the first panel, with 60 judges, labelled E, has been
asked to measure the age of acquisition on a scale from 1 to 7 according to how early in
their life each word was first known, but without specifically mentioning the age; here 1
corresponds to very early in life and 7 to most late; ii) the second panel, with 68 subjects,
labelled I, has been asked a measure based on a scale 1-7 as well, but this time based on
age classes: the classes are: 1=0-2 years, 2=2-4 years, 3=4-6 years, 4=6-8 years, 5=8-10
years, 6=10-12 years and 7=13 and further.

3. Theoretical Framework

The consistency of judges is of high importance in several frameworks, as in sensorial analysis.
For this task, specific estimation methods have been developed (see, e.g. [7]). Here, we pre-
ferred to consider the problem on another point of view, as no objective primitiveness may be
measured, but only identify a central tendence stastistics. Thus, we only removed those judges
whose results appeared clearly far from all others. For what concerns the scale definition, we
tried to compare two possible scales: a free one and one based on age intervals, and we studied
their agreement. Thus, we considered of interest to use for our study exploratory multidimen-
sional analysis methods, since their graphical representations allowed a visual inspection of
most of the questions that we might ask.

An interesting feature of the analyses that we adopted is that they are all based on the same
principle, the Singular Value Decomposition (SVD, [2]) of some transformation of the original
data matrix T : X → A = T (X). The SVD of a matrix A is given by A = UΛ1/2V ′, with
U and V the matrices of the (vertical) eigenvectors of A′A and AA′ respectively, and Λ the
(diagonal) matrix of their corresponding eigenvalues, sorted in descending order. The theorem
states the highest importance, in terms of represented inertia, of the first generated axes in
respect to the following ones.

According to the data at hand, the analyses have been submitted to Simple Correspondence
Analysis (SCA, [1], [5]) to identify both judges and items with critical recognition behavior, and
Multiple Correspondence Analysis (MCA, ibid.) to identify those judges with biased evaluation
of primitiveness in respect to others. Multiple Factor Analysis (MFA, [3]) has been used to
compare the primitiveness of the words given by the two panels of judges according to the two
different scales, and eventually Principal Component Analysis (PCA, ibid., see also [6]) has
been used to define the primitivity index of our interest.

The data transformations, according to the different methods may be described as follows:

PCA xij → zij = xij−xj√
nσj

standardization

MFA xijk → zijk = xijk−xjk√
λ1
k

√
nσjk

std. adjusted to group’s coherence
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SCA xij → sij = xij√
xi.x.j

−
√
xi.x.j
x..

deviation from independence

MCA xijq → sijq = 1√
Q

( xijq√
xi.
−
√
xi.
x..

)
deviation from average profile

4. Selecting Images

The results of first submission reported 10 images that no judge could identify, so that we
withdrew them immediately. On the other side, 66 images have been recognized by all judges,
thus automatically included. Therefore, we applied SCA to the remaining images to get a
graphical representation of the pattern of both judges and images on factor planes. According
to Figure 1(a) below, six judges, P13, P17, P25, P32, P34, and P36, appear further from
the origin than all others, whose central pattern seems homogeneous, thus they have been
withdrawn.

Figure 1: Analysis for the selection of the images. The items on the first factor plane of SCA:
(a) The judges, (b) The names.

As well, some items, such as baby stroller, toe, celery, and chalk, were identified by no more
than 5 judges. They are located at the border of the cloud as can be seen on Figure 1(b)
above. We re-ran SCA with only 32 judges and also all the items whose frequency of correct
identification was lower than 50%. From the homogeneous results we could conclude that no
further removal of judges seemed necessary. Eventually, we decided to keep all the images
that were correctly identified by at least 90% of judges. Based on 32 judges: 97 images were
identified by all of them, 26 by only 31 (97%), 24 by 30 (94%), 14 by 29 judges (91%), summing
up to 161 images.

5. Defining word primitiveness

In order to examine first the homogeneity of the judges, we started by running MCAs on each
of two tables. Their behavior is represented by a trajectory that connects the seven levels of
the scale. Observing the two graphics in Figure 2, one may observe that the trajectories of the
judges that measured freely (Figure 2(a)) are much longer than those of judges based on age
(Figure 2(b)). This may be explained by a reduced use of the first levels by the latter.
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Figure 2: Analysis of the primitiveness judgements. The judges’ trajectories represented on
the first factor plane of MCA: (a) free judgements, (b) judgements based on age intervals.

The pattern of trajectories on both tables on the first factor plane is very homogenous
among both sets of judges: Only five of them (E12, E23, E59, I2, and I58 ) showed very
strange trajectories (see them in Figure 3), thus were removed.

Figure 3: Analysis of the primitiveness judgements. The outlier judges’ trajectories represented
on the first factor plane of the respective MCA: (a) free judgements, (b) judgements based on
age intervals.

Then, we ran a MFA, considering the two groups of reduced judges (57 that used the free
scale (E) and 66 with age-scale (I ). A specific advantage of MFA in respect to PCA it its ability
to represent on factor planes not only the global units, but also the partial ones, that is, in
our case, the projection of the words seen by either group of judges. Indeed, the total word is
situated on the centroid of the two partial words. Therefore, distances between partial words
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Figure 4: Analysis of the age of acquisition judgements. All the words represented on the
plane spanned by the first two factors of MFA. Only the words with the largest trajectories are
labelled, with the word (the compromise) and either E or I the partial ones.

are a measure of their dissimilarity according to the two sets of measurements and they may
be decomposed according to the different axes. The words with highest negative differences
along the first factor are burro, gravata, lâmpada, mala, and patins and those with highest
positive ones are borboleta, cigarro, cinzeiro, escada, galinha, ônibus, and vestido. Thus, the
first might be words judged more primitive by the free-scale judges, whereas the second might
be judged more primitive by the age-scale ones. Here, we deal only with the first axis that
clearly represents primitivity of words (51.51% of total inertia), since the following explain too
little inertia to deserve being taken into account (the second only 3.64%). In Figure 4 all words
are represented both totally and partially, with the total units at the centroid of the respective
partials. Looking at the extreme of the first axis it is interesting to find the words with the
largest differences on the second axis and in particular a reverse behaviour: this reflects the
small rotation of the first factors of partial tables, but does not deserve a true interest for our
purposes.

As the partial first factors of the two tables where most correlated among each other (.98)
and with the MFA one (over .99), we decided to merge the two data sets , so that as measure
of the words’ primitivity was taken the first principal component of this unified table’s PCA.

6. Conclusions

The study aiming at both selecting images with high naming agreement and measuring the de-
gree of primitiveness of their correspondent words, has been carried out using only exploratory
multidimensional data analyses. This allowed to withdraw judges with a clearly biased behav-
ior in respect with the others and select a set of words that have been recognized by nearly
the totality of judges. The free scale resulted a little better performing than the other, since it
allowed a more instinctive estimate.
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Abstract We present a new algorithm to finding suitable orderings for instances of the Distance Geometry
Problem (DGP) that can allow for discretization. We present some preliminary computational
results showing that the new algorithm outperforms a previously proposed one.
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1. Introduction

Given an integer K > 0 and a weighted undirected graph G = (V,E, d), with d : E −→ R+,
the Distance Geometry Problem (DGP) asks whether there exists a function x : V −→ RK
such that:

∀(u, v) ∈ E ||xu − xv|| = d(u, v),

where xu = x(u) and xv = x(v) [6].
The DGP is usually formulated as a continuous optimization problem, but, under some

assumptions, it can be formulated as a combinatorial problem.

Definition 1.1. The Discretizable Distance Geometry Problem (DDGP) [7].
Let G = (V,E, d) be a weighted undirected graph associated to a DGP instance. Let us suppose
that there is a partial order relation on the vertices of V . The DDGP in dimension K consists
in all the DGP instances satisfying the following two assumptions:

Assumption 1: there exists a subset V1 of V such that

|V1| = K;
V1 is a clique;
the order relation on V1 is total;
∀v0 ∈ V1 ∀v ∈ V \ V1, v0 < v.

Assumption 2: ∀v ∈ V \ V1,∃u1, u2, . . . , uK ∈ V such that:

u1 < v, u2 < v, . . . , uK < v;
{(u1, v), (u2, v), . . . , (uK , v)} ∈ E;
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the Cayley-Menger determinant of the distance matrix related to {u1, u2, . . . , uK} is
not 0.

We say that an ordering for the vertices of V is a discretizing ordering if it makes the
assumptions of the DDGP satisfied.

DDGP instances can be solved by employing a branch-and-prune (BP) algorithm [5] that
is potentially able to enumerate the whole solution set. This is a major difference between
the BP algorithm and other algorithms for the DGP. However, in order to apply BP, the
DDGP assumptions have to be satisfied. Finding an order for the vertices in V such that
these assumptions are satisfied represents an important pre-processing step for the solution of
DDGPs [7]. We refer to this problem as the Discretizing Vertex Order Problem (DVOP) [4].

The rest of the paper is organized as follows. In Section 2, we introduce the DVOP and
present the new algorithm. Some preliminary computational results are presented in Section 3.

2. Suitable orderings for the DDGP

Let G = (V,E, d) be a weighted undirected graph related to a DGP instance, and let us suppose
that a total order is associated to the vertices in V (it is known that, from any partial order on
V , a total order can be derived). For referring to an order, we will consider the usual symbol
<, and we will add subscripts when it will be necessary to distinguish among different orders
(e.g. <1 or <2 ). Similarly, the symbol (u, v)<1 will refer to the arc involving the vertices u
and v in the order <1. We will refer to an order < for which the assumptions in Def. 1.1 are
satisfied in dimension K as a DDGP K-order.

Let α<(v) be, for v ∈ V , the number of adjacent predecessors of v in the order <, that is:

α<(v) = card{u ∈ V : (u, v)< ∈ E}.

Equivalently, let β<(v), for v ∈ V , be the number of adjacent successors of v, in the order <:

β<(v) = card{u ∈ V : (v, u)< ∈ E}.

Definition 2.1. The Discretizing Vertex Order Problem (DVOP).
Given an undirected graph G = (V,E) and a positive integer K, establish whether there is an
order < on V such that: (a) the first vertices in the order form a K-clique, and (b) for each
v ∈ V , α<(v) ≥ K.

We observe that the DVOP does not verify whether the order satisfies the assumption on
Cayley-Menger determinant given in Def. 1.1. This is because the set of distance matrices
yielding Cayley-Menger determinant having value exactly zero has Lebesgue measure zero
within the set of all possible (real) distance matrices [4]. The probability for this to happen
is therefore 0 in a mathematical sense. The NP-completeness of the DVOP follows from NP-
completeness of the K-clique problem, because finding a DDGP K-order implies finding K
vertices forming a clique in G. When K is fixed, however, as in real applications, the DVOP
can be solved in polynomial time [4].
Proposition 2.1. Given a weighted undirected graph G = (V,E, d) and an order < on V ,
there do not exist DDGP K-orders if some vertex has degree less than K.

Note that Prop. 2.1 cannot be inverted, i.e. there can exist instances that do not admit any
DDGP K-order even if, for all v ∈ V , α<(v) + β<(v) ≥ K.

2.1 The new algorithm

Let us consider that an order <1 for the vertices in G is already available. We suppose that
this order is not a DDGP K-order, and, for each v ∈ V , α<1(v)+β<1(v) ≥ K, for guaranteeing
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that such an order may exist. The basic idea behind this algorithm is to select all v for which
α<1(v) < K, and to modify their position so that, in the new order <2, we have α<2(v) = K
and β<2(v) = β<1(v) + α<1(v)−K.

By considering the order <1, let us suppose that v′ is such that α<1(v′) < K. Let h =
K − α<1(v′), and Ξ = {u ∈ V : (v′, u)<1 ∈ E}. From the order <1, an order on the vertices of
Ξ can be obtained, so that the hth element can be selected, say v′′. In this new order <2, we
can move v′ just after v′′, implying that α<2(v′) = K. The vertices between the old and the
new position for v′ can be affected by this change, whereas the situation remains unchanged
for all others. If a vertex v is between the old and new position for v′, then the value of α<1(v)
might decrease. In such a case, the position of the vertex in the order needs to be modified,
and this can be simply done by applying the procedure above to the vertices following the old
position of v′ in the order <1. A sketch of the new algorithm we propose is in Alg. 1. This
algorithm requires an order <1 in input; as a consequence, the performances of this algorithm
are dependent on the given initial order.

Algorithm 1 Algorithm for finding suitable orders for the DDGP
1: reorder(G,<1)
2: copy order <1 in <2;
3: define ordered set B such that each v ∈ V is in the order <2
4: for each v ∈ B, in order <2 do
5: if α<2(v) < K then
6: let Ξ = {u ∈ V : (v, u)<2 ∈ E};
7: let h = K − α<2(v);
8: let w = hth element, in the order <2, in Ξ;
9: move, in the set B, v just after w;
10: update order <2 (from updated B);
11: end if
12: end for

We remark that this algorithm could cycle. When there is a subset of vertices that are se-
lected in repetition, it means that they form a subset of vertices having less than K connections
with the rest. When the algorithm cycles, we can stop the execution, and no DDGP K-orders
may exist.

3. Computational experiments

In this section, we present some computational results on a set of instance of the Wireless
Sensor Network Localization (WSNL) problem [1, 2, 8]. It is supposed that K = 2 and that
all distances are precisely known. The instances were generated in similar way as in [3]: on a
square in R2 having side 1, all distances between randomly placed points, that are closer than
a predefined radio range distance R, are supposed to be known.

We compared the running time of Alg. 1 to the greedy algorithm proposed in [4]. All codes
have been written in C and compiled with the gcc compiler by GNU, version 4.7.1, under Linux
on an Intel(R) Core(TM) i3-2120 CPU@3.30GHz with 8Gb RAM.

Table 1 shows some computational experiments for different sizes n and different radio ranges
R. It can be easily remarked that the greedy algorithm is strongly dependent on the size n and
on the cardinality of E, because the computational experiments are more expensive when the
values of n and |E| are larger. On the other side, Alg. 1 shows this behavior only in relation
with n, while it improves its performances when |E| is larger.
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Table 1: Comparison between Alg 1 and Greedy algorithm proposed in [4] on a set of WSNL
instances

Instances Alg. 1 Greedy Instances Alg. 1 Greedy
n R |E| CPU time CPU time n R |E| CPU time CPU time

4000 0.05 60351 1.23 0.98 8000 0.05 241590 3.35 5.83
4000 0.06 85815 0.76 1.13 8000 0.06 343873 1.21 7.59
4000 0.07 115511 0.47 1.33 8000 0.07 466346 1.07 9.71
4000 0.08 149606 0.32 1.62 8000 0.08 601909 0.57 11.96
4000 0.09 187789 0.25 1.91 8000 0.09 750550 0.43 14.71
4000 0.10 230116 0.19 2.29 8000 0.10 918520 0.36 17.01
6000 0.05 136532 1.71 2.64 10000 0.05 378545 3.77 11.09
6000 0.06 195323 0.98 3.39 10000 0.06 536711 2.70 14.61
6000 0.07 262742 0.73 4.24 10000 0.07 723071 0.97 17.81
6000 0.08 337476 0.40 5.07 10000 0.08 936524 0.68 22.18
6000 0.09 426764 0.32 5.27 10000 0.09 1182242 0.44 27.5
6000 0.10 518907 0.29 7.48 10000 0.10 1440175 0.49 32.69

In future works, we plan to develop in more details the theory behind the new proposed
algorithm. Moreover, we will work for extending this new algorithm for solving instances of
the DVOP where not all the available distances are precise. We will also explore the possibility
to combine the two algorithms compared in this paper in the attempt of bringing their best
properties into a hybrid one.
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Abstract Many complex materials at the nanoscale do not have periodic long range order and hence their
structures cannot be solved by traditional crystallographic methods. The "nanostructure problem"
is determining, with high precision, the arrangement of atoms in such irregular nanostructures. Our
approach to this inverse problem is the use of distance geometry methods, which can reconstruct
structures using only the interatomic distances obtained from the atomic pair distribution function,
which is generated from scattering data.
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Reconstruction of complex structures using pair distance information is an inverse problem
that occurs in many branches of science and engineering [1–5]. Given a set of inter atomic
distances we need to find the location of the atoms, up to global rotations and translations of
the structure. This pair distance inverse problem may be interpreted as a complex network
reconstruction problem where the edge weights are equal to the Euclidean distances between
nodes in the network [6, 7].

In material physics, crystallography is the gold standard for structure determination. When
crystals are not available, other methods are used. Determination of protein structure in
solution has been successfully done by using the pair distance information extracted from
NOESY NMR data [3, 4, 8–10]. In proteins, the list of residues or the sequence of a protein is
known, enabling experiments to be carried out to specify the points between which each distance
lies. This leads to the assigned case of the inverse problem. Algorithms for solving this type
of problem are known to be easy, being of order the number of atoms in the structure (N).
However, the NMR data has large uncertainties in the experimentally obtained interatomic
distances, with imprecisions typically of the order of 25% or higher [11], making the problem
computationally hard [12, 13].

In contrast, for problems concerning materials and most heterogeneous media, the pair dis-
tances are not assigned, as we do not know which nodes lie at the end of each distance. This
makes reconstruction significantly harder and is the unassigned case of the inverse problem.
The pair distribution function (PDF) method is used for the analysis of the local structure
of nanoparticles and complex materials. In many complex materials, such as high perfor-
mance thermoelectric materials [14], high temperature superconductors [15] and manganites
[16], crystalline order and heterogeneous local distortions co-exist so that crystallographic and
PDF methods are complementary. Crystallography finds the average structure and the PDF
gives the local structure [17, 18]. The PDF gives a direct measure of the list of interatomic
distances arising in the local structure, however the end points of the distances are not known.
We face a computationally challenging problem known as the "nanostructure problem"[19].

In collaboration with Professor Billinge and his group at Columbia University, we developed
an efficient algorithm for reconstructing structures which have a high symmetry, such as C60
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Figure 1: Some examples of the different types of structures we have reconstructed using
Euclidean distance lists. The figures on the left are the distance lists while those on the right
are the reconstructed structures. The plot on the top left is for C60 fullerene molecule that
has a degenerate distance list and at the bottom left is that for a random set of 10 points in
the plane that has a non-degenerate distance list. The multiplicity is on the Y axis while the
distance is on the X axis (in arbitrary units). The structure of the C60 fullerene (top right)
was found using the Liga algorithm and the structure of the random point set (bottom right)
was found using the Tribond algorithm from the given distance lists.

and a range of crystal structures. The novel “Liga algorithm” [20–22] is inspired by the Spanish
soccer league and is based on tournaments and promotion and relegation. Although this method
works well for structures with relatively high symmetry, it fails miserably for low symmetry
cases such as random point sets, due to the fact that there are a large number of unique pair
distances in random structures. Thus, they fail for the general problem of complex Euclidean
networks.

To overcome this problem we came up with the Tribond algorithm, which is specifically
designed for solving structures which have low symmetry (Fig. 1). It makes use of the fact
that any over-constrained cluster (core) will be very likely part of the final structure. Tribond
finds such a cluster and then does the remaining buildup, all in polynomial time. We have
successfully implemented the algorithm using C++ in two and three dimensions. In 2D, we
have been able to reconstruct low symmetry structures consisting of a thousand atoms in about
24 hours on a desktop computer. Our Tribond algorithm solves the unassigned case of the
inverse problem problem given precise distances and we also have some success in solving the
problem when given imprecise distances. A hybrid algorithm that combines Tribond and Liga
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algorithm would be able to solve structures which fall in between those having high symmetry
and low symmetry.
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Abstract Let G be a threshold graph of order n with distance matrix Θ. We give an O(n) algorithm
for constructing a diagonal matrix congruent to Bx = Θ + xI for any real x. An application
using Sylvester’s Law of Inertia can determine, in linear-time, how many eigenvalues of Θ lie in
any interval, allowing fast divide-and-conquer approximation. We also show that any distance
eigenvalue λ 6= −1,−2 must be simple.

Keywords: eigenvalue, distance matrix, threshold graph

1. Introduction

Distance in graph theory is a simple but powerful idea, upon which many parameters depend,
including diameter, radius, average distance and Wiener index. A path in a graph is a sequence
of distinct vertices, such that adjacent vertices in the sequence are adjacent in the graph. The
length of a path is the number of edges on the path. For connected graphs, the distance between
two vertices u and v, denoted d(u, v), is the length of a shortest u− v path.

The diameter of a connected graph G, denoted diam(G), is the maximum distance between
two vertices. The eccentricity of a vertex is the maximum distance from it to any other vertex.
The radius, denoted rad(G), is the minimum eccentricity among all vertices of G.

The average distance of a graph G of order n, denoted µ(G), is the expected distance between
a randomly chosen pair of distinct vertices. The study of the average distance began with the
chemist Wiener [14], who noticed that the melting point of certain hydrocarbons is proportional
to the sum of all distances between unordered pairs of vertices of the corresponding graph. This
sum, denoted by W (G), is called the Wiener index of G. Clearly,

W (G) =
(
n

2

)
µ(G).

The Wiener index and its applications to chemistry have received much attention (See, for
example, [1, 2, 4, 10, 12, 13]).

The distance matrix Θ of a connected graph G is the matrix whose rows and columns are
indexed by its vertices such that its (u, v)-entry is equal to d(u, v). If 1 denotes the all 1’s

∗The second author was partially supported by CNPq (Grants 309531/2009-8 and 473815/2010-9) and FAPERGS (Grant
11/1619-2). The third author was on leave from UNIPAMPA and supported by CAPES (Grant 0283/12-6).
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column vector, the Wiener index may be written in the form

W = 1TΘ1
2 .

The eigenvalues of Θ are called the distance eigenvalues of G, form the distance spectrum,
and have several real-world applications. Distance eigenvalues were first studied by Graham
and Pollack in 1971 to solve a data communication problem [6]. The distance matrix contains
information on various walks in chemical graphs. It is useful in the computation of topological
indices and thermodynamic properties such as pressure and temperature coefficients. It con-
tains more structural information than the adjacency matrix [7]. In the chemistry literature,
the largest eigenvalue of Θ(G) helps to model the boiling point of alkanes [1]. In addition to
chemistry, distance matrices find applications in music theory, ornithology, molecular biology,
psychology, archeology etc. (See [3] and the papers cited therein.)

This paper is concerned with the distance eigenvalues of threshold graphs. Threshold graphs
have several applications in psychology, scheduling, and synchronization of parallel processes
[11]. They can be characterized in many ways, but a simple way of obtaining a threshold graph
is through an iterative process which starts with an isolated vertex, and where, at each step,
either a new isolated vertex is added, or a vertex adjacent to all previous vertices (dominating
vertex) is added. We represent the graph with a binary sequence (b1, . . . , bn), ordering the
vertices in the way they are created. The adjacency matrix A and distance matrix Θ of the
threshold graph represented by (0, 1, 0, 1) are

A =


0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

 Θ =


0 1 2 1
1 0 2 1
2 2 0 1
1 1 1 0

 (1)

If Θ = [aij ] is the distance matrix of a threshold graph G represented with (b1, . . . , bn), then
it is easy to see that if bi = 1, aij = aji = 1, for j < i. And if bi = 0, aij = aji = 2, for j < i.

2. Diagonalizing Θ + xI

Recall that two matrices R and S are congruent if there exists a nonsingular matrix P such that
R = P TSP . Our main result is an O(n) algorithm for constructing a diagonal matrix congruent
to Bx = Θ + xI, where Θ is the distance matrix of a threshold graph, and x is an arbitrary
scalar. The algorithm proceeds in n−1 stages and works bottom-up, and right-to-left. At each
stage, adjacent rows and columns m and m − 1 participate in operations. Diagonalization is
achieved because at the end of this stage, all entries of row and column m, will be zero except
the diagonal element. For Θ in (1) and x = 1, the algorithm would proceed as follows:

1 1 2 1
1 1 2 1
2 2 1 1
1 1 1 1

→


1 1 2 0
1 1 2 0
2 2 0 0
0 0 0 1

4

→


1 1 0 0
1 1 0 0
0 0 −1 0
0 0 0 1

4

→


0 0 0 0
0 1

4 0 0
0 0 −1 0
0 0 0 1

4


Congruence is guaranteed because at each stage of the algorithm we use the same pair of
elementary row and column operations. For example, in transforming the first matrix above
to the second, we employed the row and column operations

R4 ← R4 −
1
2R3, C4 ← C4 −

1
2C3
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Algorithm Diagonalize(G, x)
initialize d(i)← x, for all i
for m = n to 2

α← d(m)
if bm = 0

α← α
4

if bm−1 = 1
if α+ x 6= 2

d(m− 1)← αx−1
α+x−2

d(m)← α+ x− 2
else if x = 1

d(m− 1)← 1
d(m)← 0

else
d(m− 1)← 1
d(m)← −(1− x)2

m← m− 1
else if bm−1 = 0

if α+ x
4 6= 1

d(m− 1)← αx−1
α+ x

4−1
d(m)← α+ x

4 − 1
else if x = 2

d(m− 1)← 2
d(m)← 0

else
d(m− 1)← 2
d(m)← − 1

2 (1− x
2 )2

m← m− 1
end loop

Figure 1: Diagonalizing Θ + xI.

and then

R3 ← R3 − 2R4, C3 ← C3 − 2C4

What is remarkable is that we do not need to store the entire matrix, only the diagonal and
the representation (b1, . . . , bn) of G. Our O(n) time and space algorithm is shown in Figure 1.
The proof of correctness appears in the full-length version of our paper.

Theorem 1. For inputs G and x, where G is a threshold graph with distance matrix Θ,
algorithm Diagonalize computes a diagonal matrix D, which is congruent to Θ + xI.

3. Finding distance eigenvalues

We seek the eigenvalues of Θ, the distance matrix of a threshold graph G. The proof of the
following theorem, which depends on Sylvester’s Law of Inertia, may be found in [8, 9].

Theorem 2. Let D be a diagonal matrix congruent to Θ− αI, where Θ is real symmetric.

i. The number of eigenvalues of Θ greater than α is the number of positive entries in D.

ii. The number of eigenvalues of Θ less than α is the number of negative entries in D.

iii. The multiplicity of eigenvalue α is the number of zero entries in the diagonal of D.
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Corollary 3. Counting multiplicities, the number of eigenvalues of Θ in (α, β], is the number
of positive entries in the diagonalization of Θ − αI, minus the number of positive entries in
the diagonalization of Θ− βI.

This observation shows that we may determine the number of eigenvalues in an interval
by making two calls to algorithm Diagonalize. As an example, consider G represented by
(0, 1, 0, 1) and x = 1. After initialization, when m = 4, we will have α = x = 1, b4 = 1 and
b3 = 0, so the first step will assign d3 ← αx−1

α+x
4−1 = 0 and d4 ← α + x

4 − 1 = 1
4 . Next, when

m = 3, we will have α = 0, x = 1, b2 = 1 and b3 = 0. This second step will assign α← α
4 = 0,

d2 ← αx−1
α+x−2 = 1, d3 ← α+x−2 = −1. Finally, when m = 2, we will have α = 1, x = 1, b1 = 0

and b2 = 1, so we assign: d1 ← αx−1
α+x

4−1 = 0, d2 ← α+ x
4 − 1 = 1

4 . The following table illustrates
the sequence of states.

bi di
0 1
1 1
0 1
1 1
initial

bi di
0 1
1 1
0 0
1 1

4
after m=4

bi di
0 1
1 1
0 −1
1 1

4
after m=3

bi di
0 0
1 1

4
0 −1
1 1

4
after m=2

By Theorem 2, this means that x = −1 is an eigenvalue of G of multiplicity 1, there are
two eigenvalues greater than −1 and one eigenvalue is smaller than −1. When applying the
algorithm to the same graph and x = 0, the final sequence is given by d = (7/3,−3/7,−7/4,−1).
This implies that 3 eigenvalues are negative and 1 is positive. We conclude that there is a single
distance eigenvalue λ ∈ (−1, 0]. This technique allows fast divide-and-conquer approximation:
Letting x = −1

2 will locate λ in (−1,−.5] or (−.5, 0].
An eigenvalue is simple if its multiplicity is one. Using our algorithm, we can prove:

Theorem 4. In the distance matrix of a threshold graph, an eigenvalue λ is simple if λ 6=
−1,−2.

4. Research Problem

In [6] it was shown that det(Θ) = (−1)n−1(n − 1)2n−2, where Θ is the distance matrix of a
tree of order n. We seek a formula for det(Θ), for distance matrices of threshold graphs G, in
terms of the representation of G.
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Abstract In this work we consider a global optimization algorithm based on a space filling curve, the Lissajous
Curve, for the Molecular Distance Geometry Problem (MDGP). We will deal with the problem
through its continuous nature.

Keywords: Global optimization, Distance geometry, Space filling curve.

1. Introduction

The problem of determining molecular structures has attracted great interest due to its appli-
cation in relevant areas such as medicine, pharmacy, biology, design of materials, and chemistry
[1]. The Molecular Distance Geometry Problem (MDGP) consists on estimate relative posi-
tions of all atoms of a molecule, given a subset of all the pair-wise distances between the atoms.
Then, the MDGP can be defined as determine positions for m points x1, x2, . . . , xm ∈ R3 such
that, for a given set of pairs D and given bounds lij , uij :

lij ≤‖ xi − xj ‖≤ uij , ∀{i, j} ∈ D.

Where each point xi, i ∈ {1, . . . ,m} represents (the center of) an atom and D ⊆ {1, . . . ,m} ×
{1, . . . ,m} is a set that identifies the available lower lij and upper uij bounds for the pair-wise
Euclidean distances.
So, the MDGP can be reformulated as a mathematical programming problem:

minf(x) = 1
2
∑

(i,j)∈D
max2

(
l2ij− ‖ xi − xj ‖2

l2ij
, 0
)

+max2
(
‖ xi − xj ‖2 −u2

ij

u2
ij

, 0
)

where x = (x1, . . . , xm) ∈ R3m,
xk ∈ R3, ∀k ∈ {1, . . . ,m}

(1)

It is easy to see that f (x1, . . . , xm) = 0 if and only if all the restrictions lij ≤‖ xi − xj ‖≤ uij
are satisfied. Thus, as the function f(x) ≥ 0, ∀x ∈ R3m, our goal is to find a global minimum
of f .
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2. Regularized hessians

Different approaches to the MDGP (1) have been explored and someones are about smoothing
techniques [6].

The problem (1) has the following general form:

min f(x) = 1
2

N∑
i=1

max2 (0, gi(x)) +max2 (0, hi(x)) (2)

It is easy to see that f(x) has continuous first (but not second) derivatives. The second
derivatives of f(x) are, in general, discontinuous at the points where gi(x) = 0. This is an
disadvantage for minimization algorithms based on quadratic models, like Newton’s method,
which enjoys good convergence properties.

Consider the associated problem:

min Ψ(x, z, w) = 1
2

N∑
i=1

[
gi(x) + z2

i

]2
+
[
hi(x) + w2

i

]2
(3)

In the following lemma we prove that problems (2) and (3) are equivalent. Problem (3) has con-
tinuous second derivatives but depends on the additional variables z1, . . . , zN and w1, . . . , wN .

Lemma 1. The point x ∈ R3m is a global minimizer of (2) if, and only if, there exists z, w ∈ RN
such that (z, w) is a global minimizer of (3). Moreover f(x) = Ψ (x, z, w).

Proof. Firstly, note that given any x ∈ R3m, define for each i = 1, . . . , N

zi = zi(x) =
{ √

−gi(x), if gi(x) ≤ 0
0, otherwise. (4)

and
wi = wi(x) =

{ √
−hi(x), if hi(x) ≤ 0

0, otherwise. (5)

Then, f(x) = Ψ(x, z, w), for z, w as in equations (4) and (5). If x ∈ R3m is a global minimizer
of f, set z = z(x), w = w(x) as (4) and (5). Given another x ∈ R3m, let be z′ = z′(x), w′ = w′(x)
as (4) and (5). Then for all z, w, Ψ (x, z, w) = f(x) ≤ f(x) = Ψ(x, z′, w′) ≤ Ψ(x, z, w). So,
(x, z, w) is a global minimizer of Ψ. Conversely, if (x, z, w) is a global minimizer of Ψ, we have
that Ψ (x, z, w) = Ψ(x, z∗, w∗) = f(x), for z∗ = z∗(x), w∗ = w∗(x) as (4) and (5). For another
x ∈ R3m, let be z′ = z′(x), w′ = w′(x) as (4) and (5). Thus, f(x) = Ψ(x, z∗, w∗) = Ψ (x, z, w) ≤
Ψ(x, z′, w′) = f(x). So, x is a global minimizer of f.

This equivalence motivates us to study Newton-like minimization methods for solving (3).
Computing the gradient and the Hessian matrix of Ψ, we get

∇Ψ(x, z, w) =



N∑
i=1

[
gi(x) + z2

i

]
· ∇gi(x) +

[
hi(x) + w2

i

]
· ∇hi(x)

2
[
g1(x) + z2

1
]
z1

...
2
[
gN (x) + z2

N

]
zN

2
[
h1(x) + w2

1
]
w1

...
2
[
hN (x) + w2

N

]
wN


, (6)
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and

∇2Ψ =



N∑
i=1
∇gi(x) · ∇gi(x)T 2z1∇g1(x) · · · 2zN∇gN (x) 2w1∇h1(x) · · · 2wN∇hN (x)

+
N∑
i=1

[
gi(x) + z2

i

]
· ∇2gi(x)

+
N∑
i=1
∇hi(x) · ∇hi(x)T

+
N∑
i=1

[
hi(x) + w2

i

]
· ∇2hi(x)

2z1 · ∇g1(x)T 6z2
1 + 2g1(x) 0

... . . . 0
2zN · ∇gN (x)T 0 6z2

N + 2gN (x)
2w1 · ∇h1(x)T 6w2

1 + 2h1(x) 0
... 0 . . .

2wN · ∇hN (x)T 0 6w2
N + 2hN (x)



.

(7)

Definition 1. We shall call good triplet (x, z, w) to those triplets such that z2
i = −gi(x) when

gi(x) ≤ 0 and zi = 0 when gi(x) > 0,w2
i = −hi(x) when hi(x) ≤ 0 and wi = 0 when hi(x) > 0.

In other words z2
i = max { 0,−gi(x)} and w2

i = max { 0,−hi(x)}.

Theorem 2. Assume that (x, z, w) is a good triplet. Assume that ∆x ∈ R3m satisfies N∑
i=1
∇gi(x) · ∇gi(x)T +

∑
{i|gi(x)≥0}

gi(x) · ∇2gi(x)

+
N∑
i=1
∇hi(x) · ∇hi(x)T +

∑
{i|hi(x)≥0}

hi(x) · ∇2hi(x)

∆x =

−

 ∑
{i|gi(x)≥0}

gi(x) · ∇gi(x) +
∑

{i|hi(x)≥0}
hi(x) · ∇hi(x)


(8)

Then, there exists ∆z,∆w ∈ RN such that

∇2Ψ(x, z, w)

 ∆x
∆z
∆w

 = −∇Ψ(x, z, w) (9)

Remarks.

(i) The theorem above shows that, essentially, a Newtonian iteration for the minimization of
Ψ(x, z, w) followed by a restoration z2

i ← max { 0,−gi(x)} and w2
i ← max { 0,−hi(x)}

is equivalent to a Newton iteration for minimizing f(x) provided that we define

∇2max {0, gi(x)}2 = ∇2 [gi(x)2] , if gi(x) = 0,
∇2max {0, hi(x)}2 = ∇2 [hi(x)2] , if hi(x) = 0. (10)

(ii) The singularity of ∇2Ψ(x, z, w) corresponds to the discontinuity of ∇2f(x).
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Theorem 3. Assume that (x, z, w) is a good triplet. Given ε > 0, assume that ∆x ∈ R3m

satisfies ∑
{i|gi(x)<0}

ε

ε− 2gi(x)∇gi(x) · ∇gi(x)T +
∑

{i|gi(x)≥0}

[
∇gi(x) · ∇gi(x)T + gi(x) · ∇2gi(x)

]

+
∑

{i|hi(x)<0}

ε

ε− 2hi(x)∇hi(x) · ∇hi(x)T +
∑

{i|hi(x)≥0}

[
∇hi(x) · ∇hi(x)T + hi(x) · ∇2hi(x)

]∆x =

−

 ∑
{i|gi(x)≥0}

gi(x) · ∇gi(x) +
∑

{i|hi(x)≥0}
hi(x) · ∇hi(x)


(11)

Then, there exists ∆z,∆w ∈ RN such that

∇2Ψ(x, z, w)

 ∆x
∆z
∆w

 = −∇Ψ(x, z, w) (12)

Remarks.

(i) Unlike Theorem 2, in Theorem 3 we see that the (∆z,∆w)-part of the solution of (12) is
uniquely determined. This is due to the regularizing perturbation. Defining as (10), the
system (11) can be written as∇2

[
1
2

N∑
i=1

max {0, gi(x)}2
]

+
∑

{i|gi(x)<0}

ε

ε− 2gi(x)∇gi(x) · ∇gi(x)T

+∇2
[

1
2

N∑
i=1

max {0, hi(x)}2
]

+
∑

{i|hi(x)<0}

ε

ε− 2hi(x)∇hi(x) · ∇hi(x)T
∆x =

−
{
∇
[

1
2

N∑
i=1

max {0, gi(x)}2
]

+∇
[

1
2

N∑
i=1

max {0, hi(x)}2
]}

,

(13)

or, equivalently,∇2f(x) +
∑

{i|gi(x)<0}

ε

ε− 2gi(x)∇gi(x) · ∇gi(x)T

+
∑

{i|hi(x)<0}

ε

ε− 2hi(x)∇hi(x) · ∇hi(x)T
∆x = −∇f(x).

(14)

The reasoning above leads us to define the Regularized Hessian of f , given ε > 0, as

∇2f(x, ε) = ∇2f(x)+
∑

{i|gi(x)<0}

ε

ε− 2gi(x)∇gi(x)∇gi(x)T +
∑

{i|hi(x)<0}

ε

ε− 2hi(x)∇hi(x)∇hi(x)T

(15)
The Regularized Hessian in (15) do not exhibit discontinuities on the boundaries gi(x) = 0 and
hi(x) = 0. Since the perturbation is positive semidefinite, the perturbed Hessian is positive
semidefinite provided that ∇2f(x) is. This is an advantage for minimization algorithms based
on quadratic models.
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3. The Global Optimization Algorithm

The global optimization algorithm presented here is based on idea to cover the domain Ω
through a dense curve. Suppose that Ω ⊂ Rn is a closed box with nonempty interior. This is:

Ω = {x ∈ Rn|l ≤ x ≤ u}.

The Lissajous curve is:

γ(t) = (cos(θ1t+ ϕ1), . . . , cos(θnt+ ϕn)). (16)

Given x0 ∈ Ω and choosing appropriately ϕ1, . . . , ϕn we can find a Lissajous curve such that
γ(0) = x0. Clearly, the Lissajous curves are smooth. Under certain conditions in the coef-
ficients θ1, . . . , θn ∈ R, the image of a Lissajous curve is dense on [−1, 1]n and under linear
transformations it is dense in Ω [5].

The strategy to solve the problem (1) is to use Newton-like minimization local methods using
the regulrized hessians and then use the Lissajous curve to try to escape from local minimizer
to a better one.

4. Computational experiments

The instances that will be considered are generated from data in the Protein Data-Bank [2, 4]
and we will adopt some instances from the work by Moré and Wu [3].
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Abstract Given a set of n + 1 points on the two-dimensional plane, indexed by i = 0, 1, 2, ..., n, suppose
that point 0 is the source of a single commodity that must be delivered to the other n points. For
each of these customer points a specific demand qi is required. Local access design concerns the
problem of finding the minimum cost network that connects all points, using only lines joining
pairs of points from the given set. Fixed (structural) and variable (operational) costs are taken
into account in the connecting network. For each used line both the fixed and the variable cost
to install and to use link (ij) are directly proportional to the distance dij between points i and
j. A spanning tree is a natural candidate for the underlined structure of an optimal local access
design. Two specific solutions plays a major role to calculate a lower bound for the total cost. A
star configuration, with degree n at the origin node 0, that minimizes the sum of variable costs.
And a minimum length spanning tree, that minimizes the sum of fixed costs. The lower bound is
expressed is terms of the used line distances dij , the customer demands qi and the parameters β
and γ, where β express the fixed cost per unit of distance and γ is the variable cost per unit of flow
and per unit of distance. Necessary and sufficient conditions are derived to verify the optimality
of a feasible solution. For given demands and line distances among the points, there exists an
open interval for the fixed over variable cost ratio β/γ for which neither a star configuration nor a
minimum length spanning tree corresponds to an optimal network.

Keywords: network design, distance in fixed cost, minimum length spanning tree, distance in variable cost,
shortest paths, computer networks, geometric structures , graph theory

1. Introduction

The spatial nature and hierarchical organization of telecommunication and transportation sys-
tems can be found in several real world applications, such as the location of switching centres
or postal offices, and plays a major role in operations research and management science models.
Minimum distances are crucial for the objective of cost minimization in these public systems.
Together with values of the spatially distributed demands, the influence of distances must
be taken into account to find optimized levels of customer concentrations, what enables the
economies of scale of aggregating the flows in the related networks. The main differences
among the models concern the hierarchical level of network design, typically backbone versus
local access network, and how the relevant aspects of connectivity, capacity, reliability, demand
patterns, routing, pricing, performance and quality of service are considered for such networks
([6] [3]). Depending on the context or application, hub nodes are called switches, warehouses,
water sources, facilities, concentrators or access points. Likewise, backbones may be referred
to as hub-level networks and local access networks may be called distribution or tributary net-
works. Normally, backbone links carry larger volumes of traffic than tributary links. Traffic
originating at a specific customer location can pass through a local access network to get to
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a hub node. After passing through the backbone network, the traffic again uses a local access
network to travel from a hub to its final destination at another location. The influence of
distance in cost occurs in all levels of an hierarchical network, but plays a major role in the
access networks.

For each level of network design, a wide range of model formulations has been covered by
the related literature, which may be classified as having a deterministic or stochastic character,
and also according to the continuous or discrete nature of the model. Because of the complex-
ity of these problems, local access network design and backbone design are often considered
independently. The papers [1], [4] and [7] are some examples that treat specifically local access
network design problems. This is the class of problems of our interest in this paper, in such a
way that we discard any reference to a considerable body of literature that treats topological
design, capacity planning and flow assignment questions at the hub-level of transportation or
telecommunication networks.

We also focus on a deterministic problem in which a single hub location is chosen from
among a continuous set of points. Most of the literature on public utility networks has only a
half of century, but the min− sum location problems originated in the 17th century, when
Fermat posed the question of, given three points in a plane, find a median point in the plane
such that the sum of the distances from each point to the median point is minimized. In the
last century, many studies have addressed extensions of the Fermat problem. A remarkable
contribution has been done by Alfred Weber, that studied the problem for a general number n
of points, also adding weights qi on each point i to consider customer demand qt that point.
The Weber problem locates facilities (medians) at continuous locations in the Euclidian plane.
We assume in this paper that, given the n customer points, the location of the source node 0
is an optimal solution of the Weber problem. The idea behind the Fermat problem has been
introduced in graphs by (Hakimi, 1964), who defined the absolute median as the point on a
graph that minimizes the sum of the weighted distances between that point and the vertices of
the graph. He allowed this point to lie anywhere along the edges of the graph, but proved that
an optimal absolute median is always located at a node of the graph, thus providing a discrete
representation of a continuous problem.

Given a set of points on the two-dimensional plane, the problem of finding the shortest
connecting network that connects all the points, using only lines joining pairs of points from
the given set is one of the nicest and simplest problems in network optimization, and arises in
many applications. If the length between every pair of points is positive, the shortest connecting
network is clearly a spanning tree, that is called a minimum length spanning tree (MLST). This
problem is closely related to the local access network design LAND problem. This paper shows
that, for a sufficiently high value of the fixed over variable cost ratio β/γ, an optimal topology
for the LAND problem is also an optimal topology for the MLST problem. On the other hand,
the paper also shows that, for a sufficiently low value of the fixed over variable cost ratio β/γ,
a star centered in in source node 0 is an optimal topology for the LAND problem. The next
two sections formalizes the LAND problem and provides theoretical results concerning cost and
distance relationships in the problem, while a summary section concludes the paper.

2. A Flow Formulation for Tree Network Design

The problem is to find a minimum cost tree over a graph G(N,E), where N is a set of n + 1
nodes and E is a set of m edges. Unless stated otherwise, the graph is complete, with a number
of m = n(n+ 1)/2 edges. The number of selected edges in an optimal tree connecting network
is n. The model parameters are provided by one square matrix, D, of order n + 1, a demand
vector q, of order n, and the two scalars β and γ, both indicating cost per unit of distance.
Each element dij of the symmetric matrix D refers to the distance between nodes i and j, that
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is assumed to be equal to the distance between nodes j and i. The diagonal of D has elements
dii = 0 and if nodes i and j are not linked by an edge in E then dij =∞.

Consider the binary variables x(ij), for i = 0, 1, ..., n−1 and j = i+1, ..., n, such that x(ij) = 1
if and only if edge (ij) ∈ E belongs to an optimal tree design. Consider also the directed flow
variables fij ≥ 0, for i = 0, 1, ..., n and j = 1, ..., n with i 6= j, which specify a single commodity
flow between nodes i and j.

A mixed integer linear program for the local access network design (LAND) problem is

min β
n−1∑
i=0

n∑
j=i+1

dij x(ij) + γ
n∑
i=0

n∑
j=1

dij fij (1)

subject to the constraints

n−1∑
i=0

n∑
j=i+1

x(ij) = n (2)

n∑
j=1

f0j =
n∑
h=1

qh (3)

n∑
h=0

fhi −
n∑
j=1

fij = qi ∀ i = 1, ..., n (4)

f0j ≤ (
n∑
h=1

qh) x(0j) ∀ (0j) ∈ E (5)

fij ≤ (
n∑
h=1

qh) x(ij) ∀ (ij) ∈ E (6)

fji ≤ (
n∑
h=1

qh) x(ij) ∀ (ij) ∈ E (7)

x(ij) ∈ {0, 1} ∀ (ij) ∈ E (8)
fij ≥ 0 ∀ i = 0, ..., n, j = 1, ..., n (9)

This single-commodity flow formulation is a simplified version of more elaborated models con-
cerning spanning trees or local access network problems ([5],[2], [4], [7]). Remark that the linear
programming relaxation of some of these multi-commodity versions provides integer solutions
for the problem, but any computational issue concerning this class of problems is out of scope
in this paper. Apart notation questions, the essential results that follows neither are dependent
from the (LAND) problem formulation nor from the used algorithm to solve the problem.

3. Cost and Distances Relationships

3.1 Cost and length definitions

For any feasible solution (xt, f t) in the mixed integer linear programming model (1-9) we
identify two parts of the objective function:
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zt = β
n−1∑
i=0

n∑
j=i+1

dij x
t
(ij) (10)

vt = γ
n∑
i=0

n∑
j=1

dij f
t
ij (11)

in such way that zt+vt is the total cost of the designed network. Let T (N,Et) be the spanning
tree corresponding to this solution and linking the origin 0 to all demand nodes h = 1, ..., n
(x(ij) = 1 ∀ (ij) ∈ Et and x(ij) = 0 ∀ (ij) ∈ E − Et). Assume that Lt is the total length of
the spanning tree T (N,Et). Let P t0h be the set of edges in the path from the origin 0 to the
demand node h, with lt0h being the correspondent length, obtained by summing the distances
dij across the edges of P t0h. Then equations (10) and (11) can be rewritten in terms of trees
and paths lengths:

zt = β Lt (12)

vt = γ
n∑
h=1

qh l
t
0h (13)

3.2 Lower bounds for costs

Two specific feasible solutions, for which we use the indices t = 0 and t = 1, provides information
to determine a lower bound for any feasible solution of the LAND problem. We say that
T (N,E0) is the trivial solution of a star configuration, with the source node 0 being directly
linked to each of the other nodes i = 1, ..., n. And we define T (N,E1) as being an optimal
topology for the MLST problem over the graph G(N,E). We call any of the spanning trees
T (N,E0) or T (N,E1) an extremal solution for the problem.

For T (N,E0), by definition, we have l00h = d0h = lmin0h for all h = 1, ..n, where lmin0h indicates
the length of a shortest path from the source 0 to the customer point h, that is of course the
straight line between points 0 and h. On the other hand, by definition, we have L1 = Lmin,
where Lmin indicates the minimum length spanning tree. The following results, that are not
proved here to reduce space, are easily shown:

Lemma 1. Every feasible solution (xt, f t), related to an enumerated spanning tree T (N,Et),
has a variable cost not smaller than that of the star configuration T (N,E0), that is

v0 ≤ vt ∀ T (N,Et).

Lemma 2. Every feasible solution (xt, f t), related with an enumerated spanning tree T (N,Et),
has a fixed cost not smaller than that of the minimum length spanning tree T (N,E1), that is

z1 ≤ zt ∀ T (N,Et).

Theorem 3. The spanning tree minimum length L1 = Lmin and the shortest path l00h = d0h =
lmin0h from the origin 0 to each demand node h are such that

β Lmin + γ
n∑
h=1

qh d0h

is a lower bound for the total cost of any enumerated tree T (N,Et) related to a feasible
solution (xt, f t) .
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3.3 Necessary optimality conditions

Let (x∗, f∗), related with a spanning tree T (N,E∗), be an optimal solution for the (LAND)
problem (1-7). The following results hold:

Theorem 4. The total length L∗ of a spanning tree associated with an optimal solution (x∗, f∗)
must satisfy

L1 = Lmin ≤ L∗ ≤ L0 =
n∑
h=1

d0h

Theorem 5. If z∗ + v∗ is the objective function value of an optimal solution (x∗, f∗) then

v∗ ≤ v1

3.4 Sufficient optimality conditions for extremal solutions

A star configuration centered in 0 is better then any given tree T (N,Et) if

β
n∑
h=1

d0h + γ
n∑
h=1

qh d0h < β Lt + γ
n∑
h=1

qh l
t
0h

In particular, for any non-trivial case where L0 > L1, that is
∑n
h=1 d0h > Lmin, we can de-

termine the value β′ for which the shortest path solution has the same cost of the minimum
length spanning tree. This kind of consideration leads to a series of results concerning suffi-
cient optimality conditions for extremal solutions. A detailed specification of these interesting
properties is left for our workshop presentation and for a complete version of this paper.

4. Summary

The concept of distance is essential to the objective of cost minimization in public utility net-
works. This paper puts this concept as the main object to find an optimal geometric structure
of a local access network. For a given set of n customer points in a two-dimensional plane,
with known distances between all pairs of these points, the fundamental problem addressed
here concerns the optimal location of a single source node 0 and an adequate choice of a tree
connecting network in order to minimize the total cost to install and to use the distribution
network.

Besides the beauty of the mathematical theory associated to cost and distance relationships,
the interest in this research topic is explained by the richness and variety of its applications.
Among the best known we find the examples of computer and telecommunication networks,
logistics of distribution systems, water supply management and electrical energy distribution.
The influence of distance plays a major role to optimize the geometric structure and the oper-
ational access to all these public utility networks.
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Abstract
Large ground truth databases are necessary to evaluate and validate computer-aided diagnosis

systems. Images used for diagnosis purposes usually have their regions of interests segmented as
a first step of the patterns recognition procedures. Automatic segmentation of medical images is
an open issue in image processing where there is an important need for validation and comparison
among new results with available image databases. The limits of such regions of interests are
frequently very irregular and to verify the adequacy of several approaches numerical and not only
visual techniques must be used. In this paper, a new algorithm for the Hausdorff distance com-
putation in discrete curves and areas is presented. The proposed algorithm finds the exact result
in much less computational time than the traditional method. Results of its use on comparison
of two automatic segmentation methods for breast infrared images are presented to illustrate the
algorithm.

Keywords: Discrete imaging, Hausdorff distance, Digital image segmentation, Ground Truth

1. Introduction

The use of new technologies (as infrared and electrical impedance tomography) can improve
early and correct diagnosis, especially if considered in computer-aided diagnosis (CADx) sys-
tems [1]. These systems uses artificial intelligence (AI) and mining techniques to improve early
diagnosis and it needs classified databases for knowledge acquisition [2]. To accomplish this,
the development of databases with proven cases is fundamental and it is the main goal of the
project on execution at the Hospital of Fluminense Federal University (HUAP/UFF) aiming
to improve the breast diseases detection using infrared (IR) images [3]. This research aims
to assist the development of CADx based on a fusion of exams (mammography, ultrasound,
MRI, thermography) considering a new way to compare the results of different discrete image
segmentation approaches. In this paper we present a new method that allow numerical com-
parisons among breast segmentations by improving Hausdorff distance calculation algorithm,
considering particular aspects of discrete objects (curves and areas) [5]. Moreover, this article
describes experiments on real breast images used to evaluate the segmentations methodologies.
Results compares two forms of achieve this information using the proposed algorithm and the
traditional one. The result of this research aims to assist the generation of diagnostic systems
or at least to be a tool to compare biological segmentation results based on discrete images.
This work is divided in more three parts: Description of the Hausdorff distance in continuous
geometry and its new formulation for discrete geometry (DG); The developed algorithm and
some aspects of its implementation; Its results on infrared exams (thermographic images) and
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conclusion about this new technique on the 2D discrete curves of the breast boundaries de-
tected from the IR acquisition. Validations were made comparing the real breasts of volunteers
submitted at same time to at least two segmentations considered very satisfactory visually and
that must be numerically compared.

2. Preliminaries

We begin by describing Hausdorff metric or distance. Let D be a closed subset of Rn (contin-
uous space) and S denote the class of all non-empty compact subset of D ([6] p.113). There
are some alternative (equivalent) ways of defining Hausdorff metric on all non-empty compact
subset S, of closed subset D, of Rn. The one presented by Falconer ([6] p.114) considering the
δ-parallel body of A ∈ S is very adequate to transform S to a discrete ZM subspace and it is
the one used here. We define Aδ , i.e. the parallel body of A ∈ S as:

Aδ = {x ∈ D : |x− a| ≤ δ for some a ∈ A}, (1)

We make S into a metric space by defining the distance d(A,B) between two sets A,B to be
the least δ such that the δ-parallel body of A,Aδ, contains B and the δ-parallel body of B,Bδ,
contains A (see first image on Figure 1):

d(A,B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}, (2)

Figure 1: Hausdorff distance between two sets A, B and the δ-parallel body ([6] p.114). Result of a spline
based segmentation [5] (pink) for IR0100 overlapped with the ground truth (green). Refined result for the same
image [11]. Manual segmentation, ground truth composition [9] and ROI defined in a binary black and white
version.

Then the two sets A,B is now subsets of the metric space S. Considering the definition of
the closure of A and B, denoted by A− and B− ( [7] p.114) we have

d(A−, B−) = inf{δ : A− ⊂ Bδ− and B− ⊂ Aδ−} = inf{δ : A ⊂ Bδ and B ⊂ Aδ} = d(A,B),
(3)

Moreover by definition of the boundary of A and B : ∂A and ∂B ([7] p.181) we have:

d(∂A, ∂B) = d(A−, B−) = d(A,B), (4)

It is plausible to consider a discrete version of (4) by replacing A with a discrete version of
it, say AM . Allowing a slight abuse of notation, let ∂AM denote the intersection of AM with ∂A.
Carefully note that this is not the boundary of AM (in fact, it makes no sense to talk about
the boundary of a discrete subset of Rn). The same argument applied to the set B and yields
a discrete version BM of it. In this way, we can think of AM and BM as subsets of a discrete
version of Rn , say ZM , and so we proceed to compute a discrete version of the Hausdorff
distance between AM and BM based on following discrete version of (2):

d(AM, BM) = d(∂AM, ∂BM), (5)
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Although this new expression (5) for discrete images follows from equation (2) and various
definitions, we not yet have known it from elsewhere in the literature. In next section, this new
expression for Hausdorff distance is used to create a new algorithm to compare binary digital
images. Although few examples are presented here, it has been extensively tested for us in the
IR segmentation evaluation as will be commented [3].

3. Proposed Algorithm

Using equation (5) instead of the equation (2), we greatly improve any traditional algorithm
for calculating the distance between two sets. To illustrate this statement a very common
algorithm (brute force) was applied in these two forms and used for images of 2 resolutions,
the results can be seen in Table 1. Moreover, this section presents some considerations to
(5) that can turn its computation on discrete images even faster. Let AM be an image of
the automatic segmented region of interest (ROI) and let BM be its ground truth respectively
(for instance the pink and green curves in the second image of Figure 1). These images can
be represented as binary images, i.e. with white (value 1) representing ROI’s pixels and black
(value 0) representing the background (Figure 1, right image). In this way, the boundary points
of A and B (pink and green curves in the right image of Figure 1) can be defined by a list of
connected pixels in a given resolution, i.e.:

∂AM = {ai ∈ AM : ∃pj ∈ Ac, pj ∈ N8(ai)} and ∂BM = {bi ∈ BM : ∃pm ∈ Bc, pm ∈ N8(bi)},
(6)

where N8(p) denotes the 8-neighborhood of the discrete point p (or pixel p) ([8] p. 210) and
Ac, Bc denotes the complement of sets A and B.

To find d(∂AM, ∂BM) through an exhaustive algorithm, it must be calculated for each ak ∈ AM

the distance |ak − bi| (for i = 1...n, where n = |B|). It is possible to simplify this search by
testing when the pixel ak of coordinates (xk, yk) has a corresponding pixel in same coordinates
in the image ∂BM, that is (xk, yk) is equal to value in ∂BM. In this case, the distance of ak
and B equals zero: this means n − 1 comparisons will not be accomplished, simplifying the
search. The proposed algorithm to calculate (5) is presented in algorithm below (The Hausdorff
distance algorithm ([5] p.109). To facilitate this calculation the index of the pixels (i.e. xk, yk)
can be used to compute the distance between them.

1 : ∂AM := {ai ∈ AM : ∃pj ∈ Ac, pj ∈ N8(ai)} and ∂BM = {bi ∈ BM : ∃pm ∈ Bc, pm ∈ N8(bi)}
2 : h := 0;
3 : for each ak = (xk, yk) ∈ ∂AM do

4 : if value(bk) ≡ value(ak) then

5 : h := 0
6 : else

7 : h2 := |bi − ak|2 = |xi − xk|2 + |yi − yk|2

8 : end if

9 : end for

10 : return h

This algorithm can be used for the entire discrete binary ROI (Figure 1 the rightmost image)
if they are presented on this way. Discrete images in two resolutions (320×240 and 640×480)
were tested. The Hausdorff distance was calculated using the entire image (d(A,B)) and only
its boundary (d(∂AM, ∂BM)) with the proposed algorithm and the traditional method. Although
the result was the same (exact Hausdorff Distance), the computation time was very different
as can be seem in line 2 of Table 1 ([5] p.110).
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Table 1: Execution time in seconds for same images using force brute and the proposed algorithm [5].

Time d(∂AM, ∂BM)320× 240 d(A,B)320× 240 d(∂AM, ∂BM)640× 480 d(A,B)640× 480
Traditional algorithm 9.57 37.78 76.51 610.65
Proposed algorithm 0.75 1.49 3.98 20.6

4. Results on Infrared Exams and Conclusions
Numerical results on ten real breast segmentation using two different approaches were con-
sidered for illustrative purposes and presented in Table 2. For the ground truth generation
three manual segmented images for each patient were used. They were manually defined using
a Samsung Galaxy P7510 tablet with stylus pen by a specialist in breast radiology and two
trained users (Figure 1). A specialized software was developed for it [9].To facilitate, all three
manual segmentations results were combining to a unique ground truth using the voting policy
proposed by Li et al. [10]. The first segmentation technique evaluated is based on Quadratic
Uniform B-Splines presented by Marques [5]. The results of the second approach were obtained
by a refinement of the previous approach using Level Set [11] (post-processing). More details
about these techniques can be found in [5, 11]. The second and third image of Figure 1 shows
the results of the segmentation methods that was evaluated by the Hausdorff distance. There
is not a visual significant difference between the automatic segmentations used, this illustrate
the need of numerical comparison. They are then compared by the proposed algorithm (Table
2).

Table 2: Hausdorff distance between the Ground-Truth and segmented images.

Images IR 0100 0149 0213 0756 0973 0990 3416 3743 3748 3825

Splines 12.76 5.00 9.22 15.56 16.97 7.07 16.28 7.28 7.81 28.28
Posproces. 12.73 5.00 9.22 14.87 16.97 7.07 16.28 7.28 7.81 29.00

5. Summary

This paper is concerned with the application of Hausdorff metric or distance for imaging. It
should be of interest to a broad readership involved in segmentations methods and its validation
by using a typical strategy of comparison with ground truth of available databases. This work
shows how Hausdorff metric computation could have its computation time reduced by using
theoretical and numerical techniques. Summing up, the steps are: Binarize the segmented
images (continuous closed sets); Subtract the inside, yielding the image boundaries; Discretize
the boundaries and calculate the distance between the sets. Validations are made by comparing
results of images in two resolutions, using well-known algorithm and ten real breast infrared
exams of volunteer who accepted to have their data included in the public database development
by the projects that support this work.
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Abstract Until this work, the packing radius of a poset code was only known in the cases where the poset
was a chain, a hierarchy, a union of disjoint chains of the same size, and for some families of codes.
Our objective is to approach the general case of any poset and any code. To do this, we will divide
the problem into two parts.

The first part consists in finding the packing radius of a single vector. We will show that this
is equivalent to a generalization of a famous NP-hard problem known as “the partition problem”.
Then, we will review the main results known about this problem giving special attention to the al-
gorithms to solve it. The main ingredient to these algorithms is what is known as the differentiating
method, and therefore, we will extend it to the general case.

The second part consists in finding the vector that determines the packing radius of the code.
For this, we will show how it is sometimes possible to compare the packing radius of two vectors
without calculating them explicitly.

Keywords: Error Correction Codes, Packing Radius, Partitioning Problems, Poset Codes

1. Introduction

Let (V, d) be a finite metric space and let C ⊂ V be a nonempty subset. The minimal distance
of C is

d (C) = min {d (x, y) : x, y ∈ C, x 6= y}
and the packing radius of C is

Rd (C) = max {R : B (x,R) ∩B (y,R) = ∅, x, y ∈ C, x 6= y}

where B (x,R) is the ball centered at x with radius R, i.e.

B(x,R) = {y ∈ V : d(x, y) ≤ R}.

The question we pose in this work is to analyze the relation between these quantities, the
minimum distance and the packing radius, in a specific context, that of the Theory of Error
Correcting Codes, where V = Fnq is a n−vector space over a finite field with q elements, C is a
linear subspace and d belongs to a family of metrics that assumes the integer values between 0
and n = dimV . If we denote by bxc the floor function, it is straightforward to show that⌊

d (C)− 1
2

⌋
≤ Rd (C) ≤ d (C)− 1

(the floor function is only a consequence of the values of d (·, ·) being integers).
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Due to the importance of this question for the Theory of Error Correcting Codes, we keep
the notation used in this context. The usual metric used in this context, the Hamming metric
dH , is defined as the cardinality |{i;xi 6= yi}|, where x = (x1, ..., xn) and y = (y1, ..., yn) are
elements in Fnq . In this case, it is well known that

RdH (C) =
⌊
dH(C)− 1

2

⌋
.

In this work we will consider the problem of finding the packing radius in the case of poset
metrics. These metrics where first introduced by Brualdi et al. [1] generalizing on the work
of Niederreiter [9]. An interesting property of these metrics is that the packing radius is not
necessarily determined by the minimum distance. Until this work, to the authors’ knowledge,
the packing radius of a poset code was only known in the following cases: chain posets [3],
hierarchical posets [2], disjoint union of chains of the same size (L. Panek, M. Muniz, M. Firer,
personal communication), and for some families of codes [4]. We will approach the general
poset case. To do this we will divide our problem in two.

The first part consists in determining the packing radius of a single vector. We will see that
this is equivalent to solving a generalization, which we will call “the poset partition problem”,
of a famous NP-hard problem known as “the partition problem”. We will then take a look
at one of the fastest known algorithms for solving the partition problem (in some cases) and
generalize it to the poset partition problem. The first time the problem of finding the packing
radius of a poset code was identified, in some sense, as a partitioning problem was in [5].

The second part consists in finding which code-word determines the packing radius of the
code. To do this we will show how sometimes it is possible to compare the packing radius of
two vectors without calculating them explicitly.

2. The Poset Metric

Let [n] = {1, 2, . . . , n} be a finite set and � be a partial order on [n]. We call the pair
P = ([n],�) a poset and often identify P with [n]. An ideal in P is a subset J ⊆ P with the
property that if x ∈ J and y � x then y ∈ J . The ideal generated by a subset X ⊆ P is
the smallest ideal containing X and is denoted by 〈X〉. A poset is called a chain if every two
elements are comparable, and an anti-chain if none are. The length of an element x ∈ P is the
cardinality of the largest chain contained in 〈{x}〉.

Let q be the power of a prime, Fq the field with q elements and Fnq the vector space of
n-tuples over Fq. We denote the coordinates of a vector x ∈ Fnq by x = (x1, x2, . . . , xn).

A poset P = ([n],�) induces a metric dP , called the P -distance, in Fnq defined as

dP (v, w) = |〈supp(v − w)〉|

where supp(x) = {i ∈ [n] : xi 6= 0}. The distance ωP (v) = dP (v, 0) is called the P -weight of v.
Note that if P is an anti-chain then dP is the Hamming distance. Because of this, when P

is an anti-chain we will denote it by H.
Given a linear code (subspace) C ⊆ Fnq and a poset P = ([n],�), we denote the minimum

distance of C as dP (C) and the packing radius of C as RdP (C). We remark that, since dP is
translation invariant, if we define the P -weight as ωP (x) = dP (x, 0) then dP (C) = min{ωP (v) :
v ∈ C − {0}}. Since C is linear, z = x− y ∈ C and therefore the packing radius is the largest
positive integer such that

BP (0, RdP (C)) ∩BP (z,RdP (C)) = ∅

for every z ∈ C − {0}.
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3. The Packing Radius of a Vector

We begin this section by defining the packing radius of a vector.
Definition 1. Let x ∈ Fnq and d be a metric over Fnq . The packing radius of x is the largest
integer r such that

B(0, r) ∩B(x, r) = ∅
and is denoted by Rd(x).

Next, we show that the packing radius of a linear code is the smallest of the packing radii
of its code-words.
Proposition 1. Let C ⊆ Fnq be a linear code and d a metric over Fnq . Then,

Rd(C) = min
x∈C−{0}

Rd(x).

Thus, to find the packing radius of a linear code, we need to find the code-word with the
smallest packing radius, which we will call the packing vector of the code. We then approach
the problem of finding the packing radius of a vector proving the following result:
Theorem 1. Let P be a poset and v ∈ Fnq . Then,

RdP (v) = min
A,B⊆Msupp(v)

{max{|〈A〉|, |〈B〉|}} − 1,

where (A,B) is a partition of Msupp(v), the set of maximal elements of supp(v).
Therefore, the packing radius of a vector is a property of its support. We then show that

the problem can be interpreted as a poset partitioning problem.
Definition 2. Let P be a poset and MP be the set of its maximal elements. We define the
packing radius of the poset P as

R(P ) = min
A,B⊆MP

{max{|〈A〉|), |〈B〉|}} − 1,

where (A,B) is a partition of MP .
Applying Theorem 1 to the definition we have that the packing radius of a vector v is

RdP (v) = R(〈supp(v)〉).
The problem of finding the packing radius of a vector is then equivalent to the problem of

finding the packing radius of a poset, which we will call the poset partition problem. This
problem is a generalization of the famous NP-hard problem known as “the partition problem”.

4. The Partition Problem

The partition problem is defined as follows: Given a finite list S of positive integers, find a
partition (S1, S2) of S that minimizes

max

∑
x∈S1

x,
∑
y∈S2

y

 .
This is equivalent to minimizing the discrepancy

∆(S1, S2) =

∣∣∣∣∣∣
∑
x∈S1

x−
∑
y∈S2

y

∣∣∣∣∣∣ .
This problem is of great importance both from the practical and theoretical point of view.

In [7], Karp proves that it is NP-hard.
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5. The Poset Partition Problem

In the poset partition problem we must minimize not the discrepancy, but what we call the
discordancy.

Definition 3. Let P be a poset and (A,B) a partition of MP , the maximal elements of P . We
define the discordancy between A and B as

Λ(A,B) = ||〈A〉| − |〈B〉||+ |〈A〉 ∩ 〈B〉|,

and the minimum discordancy of P as

Λ∗(P ) = min
XtY=MP

Λ(X,Y ).

The packing radius of a poset can then be written in terms of its minimum discordancy.

Theorem 2. Let P be a poset of size n. Then, the packing radius of P is

R(P ) = n

2 + Λ∗(P )
2 − 1.

One of the main heuristics used in solving the partition problem is known as the KK
(Karmarkar-Karp) heuristic [6], or as the differencing heuristic. We can generalize this heuris-
tic for the poset partition problem and also generalize one of the best known algorithms, for
some cases, that heavily uses the KK heuristic known as the CKK (Complete Karmarkar-Karp)
algorithm [8].

6. Finding the Packing Vector

To find the packing radius of a poset code we need to find its packing vector, the code-word
with minimum packing radius. One way to do this would be to calculate the packing radius
of each code-word, but as we have seen that would be a big problem since we would have to
solve a poset partition problem for each code-word. We can show some ways in which we can
sometimes compare the the packing radius of two posets without explicitly determining them.
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Abstract This paper presents a comparison between two different imputation methods, mean and k Nearest
Neighbors (kNN), applied to classification problems with missing features. This comparison is
conducted using two classification methods: Decision Tree and kNN classifier. The former is an
unstable classifier, while the latter is stable. It is shown that the distance-based imputation method
(kNN) is less prone to introduce data distortion, leading to higher recognition rates.

Keywords: Missing Features, Imputation Methods, Classification Problems.

1. Introduction

Classification methods are learning algorithms used to solve tasks for which the design of
software using traditional programming techniques is difficult. Biometric recognition, filter for
electronic mail messages and DNA recognition are examples of these tasks. Several different
learning algorithms have been proposed in the literature such as Decision Tree, kNN, Neural
Networks, Support Vector Machines, etc. Considering a supervised classification problem with
the following set of class labels Ω = {ω1, ω2 . . . , ωc}, samples xi,t contained in a training dataset
are used by learning algorithms to the design of a robust well-suited classifier to the problem
concerned. Then, this classifier is used to predict the label of the test samples xi,g contained in
a test dataset, focusing on estimating the generalization performance of the trained classifier.
Each training sample xi,t is an n-dimensional vector xi,t = [x1, ..., xn]T ∈ Rn, where the real
space Rn is called feature space. Traditionally, it is assumed that the test samples are also
n-dimensional vectors xi,g = [x1, ..., xn]T ∈ Rn. Nonetheless, several real-world applications
may be prone to missing features on test data set due to bad sensors, data corruption, refusal
of respondents to answer certain questions, failed pixels, and others.

Even though discarding all instances with missing features may be used to cope with such
a problem, this is not a suitable solution since is not frequently possible to reject to take
a decision in real applications. Consequently, several methods have been proposed in the
literature to treat missing features. According to Garcia-Laencina et al. [2], the methods for
pattern classification with missing features may be divided into three groups: (1) model-based
procedures; (2) machine learning-based methods; and (3) missing data imputation. In the
first group, a model defining the distribution of the data is constructed using strategies like
expectation-maximization. In the second group, missing features are dealt with directly by
a classifier, for instance Decision Tree [3]. Finally, imputation methods focus on substituting
missing values with meaningful estimates.
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Imputation methods are divided into statistical and machine learning-based imputation[2].
Mean and multiple imputation are examples of statistical methods, while kNN and Neural
Networks are examples of imputation based on machine learning. The second group is assumed
to outperform statistical methods [4], especially mean. However, imputation introduces data
distortion, whatever the method used to perform it. In this paper, we show that a distance-
based imputation method (kNN) introduces less data distortion than a statistical method
(mean). This comparison is conducted on five different databases, that represent five different
classification problems, and using two different classifiers: kNN and Decision Tree (DT), stable
and unstable classifier respectively. It is important to take into account the distinction between
unstable or stable classifiers [1]. The first group, for instance DT and Neural Networks, is
strongly dependent on the training samples, while the second group, classifiers like kNN and
Fischer linear discriminant, is less sensitive to changes on the training dataset.

This paper is organized as follows. Section 2 presents research work related to this paper.
Then, the parameters employed in the experiments and the results obtained are presented in
section 3. Conclusions and suggestions for future work are discussed in section 4.

2. Related Work

In [4], Batista and Monard investigated four imputation methods, namely mean, kNN and
internal missing features treatment strategies used by two DT algorithms. Missing data was
inserted completely at random (MCAR) in the following percentages: 10%, 20%, 30%, 40%,
50% and 60%. The authors concluded that kNN can outperform all the other three methods.
However, only DT was used as a classifier to measure the impact of imputation methods in its
performance.

Ding and Ross [5] compared the following four groups of imputation methods: kNN, likelihood-
based methods, Bayesian-based methods and multiple imputation, applied to the biometric
fusion problem. Using MCAR, 10% and 25% of missing rates were generated for the test set.
Their results indicated that kNN was better than the other methods investigated. It is impor-
tant to mention that a technique for score-level fusion, instead of a classifier, was employed to
classify samples from the test set.

In [2], four missing features estimation techniques have been compared: kNN imputation,
self-organizing map (SOM) imputation, Multylayer Perceptron (MLP) imputation, and the
expectation-maximization algorithm. The following missing rates were inserted based on
MCAR: 5%, 10%, 20%, 30% and 40%. Taking into account that three different databases
were investigated, the authors concluded that there was not a unique best method for all clas-
sification domain tested. Again, only one classifier was used to measure the effect of missing
features estimation techniques, that is an artificial neural network.

Finally, Branden and Verboven [6] have compared original kNN, a modified version of kNN,
an iterative procedure imputation method, a Bayesian-based method and a sequential imputa-
tion technique in three real databases. They have also proposed an imputation method. Their
objective was to evaluate how all these methods handle outliers in the data set. They tested
seven different percentages of missing rates introduced by MCAR: 1%, 3%, 5%, 10%, 15% , 20%
and 30%. The results showed that their proposed method outperformed the other imputation
methods employed, due to the fact that this method was designed to be robust to outliers.
Only one classifier (distance-based) was used in their experiments, similar to previous works.

In this paper, two imputation methods are investigated, mean and kNN, using two different
classification methods: DT (unstable classifier) and kNN (stable classifier). Mean consists of
replacing the missing feature by the mean or mode, of all known values of that feature. In a
classical kNN imputation, each missing feature is completed by taking an average (or mode) of
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the corresponding values of the k nearest samples. A distance function, for instance Euclidean
distance, is considered as the similarity measure.

3. Experiments and Discussion

Experiments have been carried out to verify whether or not the distance-based imputation
method helps to reduce data distortion in both unstable and stable classifiers. We used five
databases in our experiments. It is important to note that the number of features was taken
into account when selecting the databases for our experiments, since the chosen databases range
from relatively high-dimensional feature spaces to small feature spaces, as it is shown in Table
1.

Even though problems with missing features are frequently detected in real applications,
few databases containing real classification problems with missing features are available in the
literature. Due to this limitation, missing features were artificially implanted into the test sets
of the databases investigated in our experiments. The following percentages of missing features
were introduced based on MCAR: 2.5%, 5%, 7.5%, 10%, 15%, 25%, 35% and 45%. The smallest
missing rates were not used in databases with small feature spaces, for instance, Feltwell does
not have 2.5%, 5%, while Ship, has not 2.5%, 5%, 7.5% of missing features, since there was not
enough features to obtain all missing rates.

Table 1: Specifications of the databases used in the experiments.

Dataset Number of Number of Training Validation Test
classes features Dataset Dataset Dataset

Dna 3 180 1300 700 1186
Feltwell 5 15 4376 2188 4380
NIST 10 132 5000 10000 68089
Ship 8 11 1020 508 1017
Texture 11 40 3080 1100 1320

Table 2: Error rates obtained using the unstable DT classifier on comparing mean and kNN
imputation methods.

Database Imputation 0% 2.5% 5% 7.5% 10% 15% 25% 35% 45%

DNA mean 22.30 23.50 25.50 25.70 25.70 28.80 32.90 34.80 37.40
kNN 22.30 23.20 25.50 25.50 25.70 28.40 32.80 34.80 37.50

Feltwell mean 17.50 - - 23.60 28.50 34.50 39.10 43.00 47.90
kNN 17.50 - - 17.60 17.80 18.20 18.90 19.10 20.00

NIST mean 10.30 18.40 24.10 28.90 35.30 43.20 55.50 65.70 68.80
kNN 10.30 10.30 10.40 10.30 10.40 10.50 10.60 10.90 11.10

Ship mean 10.90 - - - 21.60 31.40 40.30 49.00 54.90
kNN 10.90 - - - 12.40 13.60 17.20 18.50 22.90

Texture mean 9.70 13.80 18.90 22.70 25.50 30.20 41.60 53.80 61.70
kNN 9.70 9.10 9.30 9.60 9.30 9.50 8.20 8.30 8.50
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Figure 1: Error rates obtained on experiments comparing kNN and mean imputation methods
using DT and kNN classifiers.

Especially noteworthy is the fact that the kNN imputation method may be critically affected
by values of its parameter k (number of neighbors), and distance functions. We used k = 5
for kNN imputation by fine-tuning this parameter using the validation data sets. Euclidean
distance was employed as distance measure. Experimental tests were also conducted to set up
the k value to kNN classifier. The best results were obtained when using k = 1. Finally, DT
does not need any parameter to be set.

The obtained results are summarized in Table 2 for DT and in Table 3 for kNN classifier.
These tables show the error rates attained when varying the missing rates. In Figure 1, plots
of the error rates reached by both kNN and DT classifiers versus missing rates are illustrated
to better compare the investigated methods.

Based on these results, it may be observed that:

1. Both imputation methods introduced high level of data distortion, since error rates in-
creased as the missing features rates increased. However, mean introduced more data
distortion than kNN impute, especially when DT was employed as classification method.
These results were expected since unstable classifiers are very sensitive to small changes
on the data.

2. The distance-based imputation method is more stable as the missing rates increase.

3. Although this paper is not focused on comparing classification methods in terms of per-
formance, our results indicate that kNN is better than DT, as well as more robust to
missing features.
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Table 3: Error rates obtained using the stable kNN classifier on comparing mean and kNN
imputation methods.

Database Imputation 0% 2.5% 5% 7.5% 10% 15% 25% 35% 45%

DNA mean 15.35 15.77 17.03 18.89 18.72 21.33 25.21 30.52 33.31
kNN 15.35 16.44 17.12 19.22 18.72 20.74 25.38 30.44 33.31

Feltwell mean 16.53 - - 18.65 21.48 23.63 27.44 27.47 31.78
kNN 16.53 - - 16.74 16.74 16.64 17.40 17.60 18.65

NIST mean 4.57 4.80 4.96 5.02 5.57 6.22 8.51 14.22 17.74
kNN 4.57 4.60 4.65 4.68 4.47 4.88 5.19 5.73 5.83

Ship mean 12.39 - - - 19.57 27.04 33.73 43.76 48.97
kNN 12.39 - - - 13.67 14.36 18.09 19.96 25.27

Texture mean 1.52 2.27 2.50 3.33 4.47 7.35 13.71 26.21 38.71
kNN 1.52 1.59 1.21 1.59 1.52 1.44 1.89 1.67 2.27

4. Conclusion

In this paper we have presented an experimental study on comparing two imputation methods,
mean and kNN, using two different classification methods: DT (unstable classifier) and kNN
(stable classifier). The experiments demonstrated that the distance-based imputation method
(kNN), introduces less data distortion since both classifiers present higher performance when
using kNN imputation. Moreover, the unstable classifier is more prone to data distortion
introduced by imputation.
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Abstract The Molecular Distance Geometry Problem is related to protein structure determination using
Nuclear Magnetic Resonance information which is imprecise distances of some proteins atoms.
Most current methods available to solve this problem work with exact distances. We propose
three new methods to propagate uncertainty: using particles, using affine forms and hybrid affine-
particles. We use these new methods to propagate uncertainty and determine the protein backbone
using NMR like information.
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1. Introduction

Proper knowledge of three-dimensional protein structure is a major step in many bioinfor-
matic tasks. On important method to obtain protein structure is the Nuclear Magnetic Res-
onance(NMR)[15] . This process can detect the interaction between pairs of atoms near to
each other. So the information given by an NMR experiment is an imprecise distance of some
pairs of atoms [6].

The computational problem to determine a protein structure from inter-atomic distances is
theMolecular Distance Geometry Problem (MDGP)[10]. Usually, we view this problem
as a graph problem, where each atom is mapped to one vertex and the edges are the known inter-
atomic distances, so this problem is also called graph embedding problem. The problem to
decide if a graph can be embedded in some k-dimensional space is known to be NP-Complete,
even for one dimensional case [13, 12]. For a complete graph with exact distances, this is a
trivial problem. Dong and Wu[4] presented the Geometric Build-Up(GBU) algorithm that uses
a sufficient dense graph with exact distances to iteratively build a solution for the problem in
polynomial time.

Most current methods used to address MDGP use exact distances or an optimization process,
like Simulated Annealing [9]. In this work, we introduce the use of particles and present a new
hybrid method to propagate uncertainty. Applied to GBU, we can reconstruct a protein using
a sparse graph with intervalar distances.

∗This research was partly supported by CAPES and FAPESP.



194 Ivan Sendin and Siome Klein Goldenstein

1.1 Uncertainty Propagation

Uncertainty representation and propagation is an important field in information theory [8].In
this work uncertainty means imprecise information, i.e. the unknown true value lies in an
interval. An uncertainty propagation method should represent the uncertainty of each system
state and control the uncertainty growth: if the uncertainty grows too much the information
can be useless.

We will use two well known methods for uncertainty propagation: Particles and Affine Forms.
Also, we will introduce a new hybrid method. All three methods will be applied to the GBU
algorithm and tested in protein structure determination.

Particles. Particles is a non-parametric uncertainty representation method [14]. Modelling
with particles is straightforward, a set of samples - called particles - is created for each unknown
value and computation is applied on these particles.

This approach is interesting because the computational framework is the same as that used
on exact values, the selection, filtering and optimization already available can be applied over
particles. In this work, we will use two methods to control particles:

Selection To control the amount of uncertainty to be propagated a subset of particles is se-
lected to represent one state. This selection is performed using Mahalanobis Distance [11].

Sample Importance Ressample Using a problem dependent scoring function, the score of
each particle is calculated and this score is used to determine the propagation probability
of each particle [2].

Affine Forms. A partially known value x̂ is defined by its central value and symbolic sum of
noise terms

x̂ = x0 +
n∑
i=1

xiei,

with xi ∈ R and ei ∈ [−1, 1]. The unknown terms ei models the uncertainty of one affine form.
To measure the uncertainty of one affine form x̂, one can use the range function:

range(x̂) =
n∑
i=1
|xi|.

In [3], an Affine Arithmetic (AA) is defined, arithmetical operations with real numbers are
trivial, other mathematical operations require approximations that create new unknowns values
and enlarge the range. One important feature of AA is that noise terms can be cancelled:

x̂− x̂ = 0.

Affine arithmetic ensures that the resulting affine form contains the true value provided that
the operands contain the true value. This property, useful for reliable computing, in general is
not desirable because it causes the growth of noise range, because unlikely regions are reached
by an affine form.

Another drawback of affine representation is its distance to exact representation, that makes
the optimization process harder to design and implement.

One can create an exact representation from affine forms sampling values for unknown terms
and replacing the sampled values in all affine forms. As the affine correlation is held on unknown
sharing, this sampling process can create consistent values for a set of affine forms. Also, it is
possible to create a particles representation using this method.
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Hybrid Method. Here, we introduce a hybrid method for uncertainty propagation. Like in
[7] and in [5], the uncertainty is represented both in parametrical and non-parametrical forms.
Our method starts with an affine representation of the problem. Then a exact representation is
obtained sampling values for the unknown. The sampling process is repeated and a set of exact
instances is created. Now these instances are filtered and optimized (as seen on Section 1.1).
We expect that this process will produce narrower limits and use those particles to control the
affine forms.

2. Computational Experiments

Three versions of the GBU were created to propagate uncertainty: particles-GBU, affine-GBU
and a hybrid-GBU. For particles and hybrid method, at each GBU step we create 60 particles
for each state. The uncertainty is controlled as follows: the SIR process uses a quadratic penalty
function, and is repeated until the average score is stabilized, and a range that contains 85% of
the particles is propagated. After the proteins is determined an interval version of Stochastic
Embedding Proximity [1] improves the final structure.

2.1 Dataset and Distances Determination

We obtained all NMR proteins structures available in October 2012 at the PDB bank. As the
proposed method uses covalent and Cα distances (see below), we are able to use only proteins
whose distances were well defined in PDB bank, making 367 proteins.

The distances used in the tests were determined as follows:

1. RMN-like distances With atoms separated up to 5
◦
A , we use a intervalar distance:

2 to 3
◦
A , 3 to 4

◦
A and 4 to 5

◦
A ,in accordance with the observed real distance;

2. Molecular Geometry distances For atoms separated by one or two covalent bonds
and for consecutive Cα its exact distance is used;

2.2 Results

The affine GBU method did not work: this method does not control the uncertainty, the range
grows too fast and the computation does not work. The results for particles and hybrid methods
are summarized on Table 1. The results are grouped by the size of the protein backbone, and
we show the percentage of distance restraints satisfied and the RMSD to the original protein.
In Figure 1 we show the result for the 2gp8 protein.

Table 1: First the average percentage of distance restraints satisfied by the reconstructed
protein and, in parentheses, the average RMSD to the original protein, in Angströms.

Method/Backbone Size 50 100 150 200 >200

Particles 65,9 (2,8) 68,4 (4,6) 63,0 (7,2) 64,5 (8,4) 63,2 (10,5)
Hybrid 73,2 (3,2) 73,8 (4,6) 62,3 (6,7) 63,7 (8,1) 64,2 (9,9)

3. Conclusions

In this work we presented three methods to build protein structures using imprecise inter-atomic
distances. The pure affine approach did not work. The statistical uncertainty propagation -
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Figure 1: The alignment of 2gp8 protein. In blue, the reconstructed protein using the hybrid
method, aligned with the original one, in green.

provided by particles selection and SIR filtering - is efficient to control the uncertainty enabling
the particles and the hybrid methods to determine the protein structure.
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Abstract In the frequency allocation problem, we are given a cellular telephone network whose geographical
coverage area is divided into cells, where phone calls are serviced by assigned frequencies, so that
none of the pairs of calls emanating from the same or neighboring cells is assigned the same
frequency. The problem is to use the frequencies efficiently, i.e. minimize the span of frequencies
used. The frequency allocation problem can be regarded as a multicoloring problem on a weighted
hexagonal graph, where each vertex knows its position in the graph. We can generalize this problem
into higher dimension. In this paper we present algorithm for multicoloring so called cannonball
graphs.

1. Introduction

A fundamental problem that appeared in the design of cellular networks is to assign sets
of frequencies to transmitters in order to avoid unacceptable interferences. The number of
frequencies demanded at a transmitter may vary between transmitters. The problem appeared
in the sixties and was soon related to multicoloring of graphs (see [2]). Besides the mobile
telephony there are several applications of frequency assignment including radio and television
broadcasting, military applications, satellite communication and wireless LAN (see [1]). A
sizable part of theoretical studies is concentrated on the simplified model when the underlying
graph which has to be multicolored is a subgraph of triangular lattice. This is a natural
choice because it is well known that hexagonal cells provide a coverage with optimal ratio
of the distance between centers compared to the area covered by each cell. Such graphs are
called hexagonal graphs [7–12]. Although the multicoloring of hexagonal graphs seems to be a
very simplified optimization problem, some interesting mathematical problems were asked at
the time that are still open. An example is the Reed McDiarmid conjecture saying that the
multichromatic number of any hexagonal graph G is between ω(G) and 9ω(G)/8, where ω(G)
is the weighted clique number [5]. On the other hand, the hexagonal graph model is known
to be practically useless in urban areas, where high concrete buildings on one hand prevent
propagation of radio signals and on the other hand allow very high concentration of users.
Loosely speaking, a three dimensional model may be needed in contrast to the hexagonal graphs
that are good model for two dimensional networks. In this paper we discuss a generalization
of the multicoloring problem on hexagonal graphs from planar case to three dimensions, where
the situation is much more interesting as in two dimensions. Obviously, optimal cells would
be nearly balls, and the question is how to position centers of the balls to achieve an optimal
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diameter to volume ratio. The famous Kepler conjecture 1 was a longstanding conjecture about
ball packing in three-dimensional Euclidean space. It says that no arrangement of equally sized
balls filling space has greater average density than that of the cubic close packing (face-centered
cubic) and hexagonal close packing arrangements.

Recently Thomas Hales, following an approach suggested by Fejes Toth, published a proof of
the Kepler conjecture (see [3, 4]). Given an optimal arrangement of balls, we define a graph by
taking the balls (or centers of balls) as vertices and connect touching balls with edges. We call
these graphs cannonball graphs, as Keplers motivation for studying the arrangements of balls
was optimal arrangements of cannonballs. Nonnegative weights are assigned to each vertex and
we are interested in multicoloring of the graph induced on vertices of positive weight. Loosely
speaking, we generalize the problem of multicoloring of hexagonal graphs from two dimensions
to three dimensions.

More formally, we are interested in multicoloring of weighted graphs G = (V (G), E(G), d)
where V = V (G) is the set of vertices, E = E(G) is the set of edges, and d assigns a positive
integer d(v) to a vertex v ∈ V . A proper multicoloring of G is a mapping f from V (G) to
subsets of integers such that |f(v)| ≥ d(v) for any vertex v ∈ V (G) and f(v) ∩ f(u) = ∅ for
any pair of adjacent vertices u and v in the graph G. The minimal cardinality of a proper
multicoloring of G, χm(G), is called the multichromatic number. Another invariant of interest
in this context is the (weighted) clique number, ω(G), defined as follows: The weight of a clique
of G is the sum of weights on its vertices and ω(G) is the maximal clique weight on G. Clearly,
χm(G) ≥ ω(G).

No approximation algorithm and no upper bound was previously known for multichromatic
number of cannonball graphs. Here we give an upper bound using some structural properties
of the cannonball graphs as well as constructions of polynomial approximation algorithms. The
main result of this paper that gives the first answer to the problem asked in [6] is
Theorem 1.1. There is an approximation algorithm for multicoloring cannonball graphs which
uses at most 11

6 ω(G) +O(1) colors. Time complexity of the algorithm is polynomial.

2. Basic definitions and useful facts

First we formally define hexagonal and cannonball graphs. Recall the definition of hexagonal
graphs: the position of each vertex is an integer linear combination x~p + y~q of two vectors
~p = (1, 0) and ~q = (1

2 ,
√

3
2 ) and the vertices of the triangular lattice are identified with pairs

(x, y) of integers. Put an edge if the points representing the vertices are at distance one in
this grid. To construct a hexagonal graph G, positive weights are assigned to a finite subset
of points in the grid and G is the subgraph induced on V (G), the set of grid vertices with
positive weights. Cannonball graphs are constructed in a similar way. However, we have many
possibilities already when constructing the underlying grid, which consists of tetrahedrons and
will be called a tetrahedron grid T . Optimal arrangement of balls in one layer is to put the
centers of balls in points of triangular grid. Then, there are exactly two possibilities to put a
second layer on the top of the first layer. These two arrangements are obviously symmetric,
however, when choosing a position for the third layer, there are two possibilities that give rise
to different arrangements (see figure 1).

Consequently, we have an infinite number of tetrahedron grids, that all came from optimal
ball arrangements. One of the arrangements (see case (a) of figure 1), can be described nicely
by introducing a third vector ~r = (1

2 ,
√

3
6 ,
√

6
3 ) in addition to ~p = (1, 0, 0) and ~q = (1

2 ,
√

3
2 , 0).

1The solution of Kepler’s conjecture is included as a part of 18th problem in the famous list of Hilbert’s problem list back
in 1900 [13].
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position (a) position (b)

Figure 1: Two different arrangements of the third layer.

Now the position of each vertex is an integer linear combination x~p+y~q+z~r and vertices of the
triangular lattice may be identified with a triplet (x, y, z) of integers. For other arrangements
(case (b) of figure 1) there is no such an easy extension of the notation from hexagonal graphs.
A cannonball graph G is obtained by assigning integer weights to the points of the tetrahedron
grid T , taking as V (G) the vertices in the grid with positive weights, and introducing edges
between vertices at euclidean distance one. Clearly, from the construction it follows that any
layer of a cannonball graph is a hexagonal graph (maybe not connected).

Formally, cannonball graph is a graph induced on vertices of positive weight.
There are natural basic 4-colorings of the (unweighted) cannonball graphs. Start with any

layer and call it the base layer. Introduce coordinates (x, y, 0) in this layer and define a base
coloring by the formula bc(v) = x mod 2 + 2(y mod 2). Colors of vertices of the next layers
are then determined exactly as follows. It is obvious that whenever we store a new layer on
(or under) the previous one with fixed coloring, we know that each ball from the new layer is
connected to exactly three balls from the previous layer, and all of those balls have different
colors. Thus there is exactly one extension of the four coloring to the next layer (see Figure
1). It is easy to see that this rule gives a proper coloring of the next layers.

The cliques in the cannonball graphs can have at most four vertices. The (weighted) clique
number, ω(G), is the maximal clique weight on G, where the weight of a clique is the sum of
weights on its vertices. We can define invariants ωi(G) which denote the maximal weight of a
clique of size at most i on G.

It was proved in [5] that for any weighted bipartite graph H, χm(H) = ω(H), and it can be
optimally multicolored by the following procedure:

Procedure 2.1. [9] Let H = (V ′, V ′′, E, d) be a weighted bipartite graph. We get an optimal
multicoloring of H if to each vertex v ∈ V ′ we assign a set of colors {1, 2, . . . , d(v)}, while with
each vertex v ∈ V ′′ we associate a set of colors {m(v) + 1,m(v) + 2, . . . ,m(v) + d(v)}, where
m(v) = max{d(u) : {u, v} ∈ E}.

In a graph G = (V,E), we call a coloring f : V → {1, . . . , k} k-good if for every odd cycle in
G and for every i, 1 ≤ i ≤ k, there is a vertex v ∈ V in the cycle such that f(v) = i. A graph is
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k-good if such coloring exists. The notions of k-good colorings and graphs was first defined in
[12]. We can give a procedure for k

k−1ω(G)-coloring of any k-good graph in the following way:

Procedure 2.2. [12] Since for 1 ≤ i ≤ k we know that every odd cycle in G has at least
one vertex assigned color i, the graph remaining after the removal of vertices of color i can be
two-colored. Repeating this for i = 1...k, and using procedure 2.1, we get k

k−1ω(G)-coloring of
G.

For each vertex v ∈ G, define a base function κ as κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T )},
where a(u, v, t) =

⌈
d(u)+d(v)+d(t)

3

⌉
, is an average weight of the triangle {u, v, t} ∈ τ(T ).

Clearly, the following fact holds.

Fact 2.1. For each v ∈ G, κ(v) ≤
⌈
ω3(G)

3

⌉
≤
⌈
ω(G)

3

⌉
We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v) we say that

the vertex v is very heavy.
To color vertices of G we use colors from an appropriate palette. For a given color c, its palette

is defined as a set of pairs {(c, i)}i∈N. A palette is called a base color palette if c ∈ {0, 1, 2, 3}
is one of the base colors, and it is called additional color palette if c /∈ {0, 1, 2, 3}.

If a vertex v does not have a neighbor of color i in G, we call such color a free color of v.

3. Algorithm for multicoloring cannonball graphs

Input: Weighted cannonball graph G = (V,E, d).

Output: A proper multicoloring of G, using at most 11
6 · ω (G) +O(1) colors.

Step 0 For each vertex v ∈ V compute its base color bc(v) and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T )

}
,

where τ(T ) is a set of all triangles in tetrahedron grid T .

Step 1 For each vertex v ∈ V assign min{κ(v), d(v)} colors from its base color palette to
v. Construct a new weighted triangle-free cannonball graph G1 = (V1, E1, d1) where
d1(v) = max{d(v)− κ(v), 0}, V1 ⊆ V is the set of vertices with d1(v) > 0 (heavy vertices
in G) and E1 ⊆ E is the set of all edges in G with both endpoints from V1 (G1 is induced
by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices in G) assign the first
unused κ(v) colors of the base color palettes of its neighbors in tetrahedron grid T .
Construct a new graph G2 = (V2, E2, d2) where d2 (v) is the difference between d1(v) and
the number of colors assigned in this step, V2 ⊆ V1 is the set of vertices with d2(v) > 0
and E2 ⊆ E1 is the set of all edges in G1 with both endpoints from V2 (G2 is induced by
V2).

Step 3 For each vertex v ∈ V2 with deg(v) = 4 assign unused colors from the free color base
palette. Construct a new 3-colorable graph G3 = (V3, E3, d3) where d3 (v) is the difference
between d2(v) and the number of colors assigned in this step, V3 ⊆ V2 is the set of vertices
with d3(v) > 0 and E3 ⊆ E2 is the set of all edges in G2 with both endpoints from V3
(G3 is induced by V3).

Step 4 Apply Procedure 2.2 for graph G3 by using colors from new additional color palettes.
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4. Conclusion

In this paper we provide an algorithm for a proper multicoloring of cannonball graphs that uses
at most 11

6 ω(G) + C colors. We believe that further improvements can be done. The interest-
ing problems that remain open are, improvement of the competitive ratio 11/6, finding some
distributed algorithms for multicoloring cannonball graphs or finding some k-local algorithms
for some k, similarly as in 2D case for hexagonal graphs. We already mentioned that in 2D case
better bounds were obtained for triangle-free hexagonal graphs. It is very likely that also for
cannonball graphs exist some "forbidden" subgraphs H, maybe tetrahedrons, such that better
bounds can be obtained for H-free cannonball graphs.
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Abstract In this work we present a brief introduction on the adoption of geometric distances in relative
astrometry. We quickly describe the observational and data-reduction principles, as well as the
precision that has been obtained in contemporary studies.
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1. Introduction

Although the word Astrometry has a broad meaning, in daily astronomical research it represents
the branch of Astronomy concerned with the position of celestial bodies in space, and associated
variations in time. This includes from the definition and materialization of a reference system
to the study of the movements of the observer, the astronomical source’s intrinsic kinematics,
the Galactic structure and the measurement of the most fundamental quantity in Astronomy:
the stellar trigonometric parallax. It is this quantity that provides the best estimation of stellar
distances from the Solar System, and thus it is the first step in a cosmic distance ladder.

Usually, the word “position of an astronomical object” means the direction in which we are
able to observe this object: in other words, it is a projection of the object’s spatial position at the
surface of an unitary sphere centered at the observer, the celestial sphere. In most astronomical
studies, this position is estimated from the measurement of angular distances between the target
object and several other objects with known celestial positions – in a certain way, this is not
dissimilar to the adoption of anchor nodes in the Distance Geometry formulation of the sensor
network location problem (e.g. [1]), using euclidean distances in the case of images coordinates
or spherical distances in the case of the objects at the celestial sphere.

Most of contemporary relative astrometric works are based in observations with CCD cam-
eras or infrared detectors. These observations result in image matrices that must be analyzed
in order to allow the determination of the coordinates of the photocenters. Depending on the
adopted data reduction system, the photocenter determination may be based on brightness
momenta (e.g. [2]), profile fitting (e.g. [3]), or point-spread-function analyses (e.g. [4]). As an
example, the data reduction system employed in Valinhos and Bordeaux CCD meridian circles,
adopts a profile fitting method. For each source, the method determines the rectangular coor-
dinates (x0, y0) of their photocenters, relative to an arbitrary origin, using a bivariate gaussian
function:
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φ(x, y) = Φ
2πσxσy

√
1− ρ2 exp− 1

2(1− ρ2) [
(
x− x0
σx

)2
+
(
y − y0
σy

)2

− 2ρ
(
x− x0
σx

)(
y − y0
σy

)
]

where Φ is the object’s total flux, (x0, y0) are the photocenter coordinates, σx and σy are the
standard deviations, and ρ is the correlation coefficient.

Then, in order to obtain celestial positions of astronomical objects from the rectangular
coordinates of the photocenters of all the detected objects in an image, it is necessary to identify
which are those with already known positions from some reference catalogue. Adopting these
objects with already known celestial coordinates, a least-squares problem is setup (e.g. [5], [6],
[7], [8], [9]), enabling the determination of instrumental parameters and the conversion between
the rectangular coordinates of all the target objects into celestial coordinates. In this way, the
link established by the reference objects materializes a fraction of the celestial sphere whose
orientation is defined by their known positions. Thus the target objects’ celestial positions may
be determined with respect to this materialization.

	  
Figure 1: A field observed with the CCD meridian circle of the Observatório Abrahão de Moraes
at IAG/USP – Valinhos. The objects adopted as references are marked in red.

In Fig. 1 a typical observation of a stellar field performed by the Valinhos CCD meridian
circle is represented. In this image, the objects with red identifiers have known coordinates
from a reference catalogue – in this case, the Tycho 2 catalogue [10], that was constructed from
observations performed by the ESA Hipparcos satellite. This catalogue provides a reliable
materialization of the International Celestial Reference System [11] in the optical wavelengths.

Naturally, the scientific contribution and even the meaning of the astrometric observations
are directly linked to the precision attained by their measurements. However, the precision and
accuracy of these measurements depend on several factors. First, the atmosphere and optics
play a major role, limiting the possible attainable resolution at each observation (e.g. [12]).
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Then, the noise sources1 as well as the apparent brightness of the target, limits the photocenter
determination. Afterwards, the quality of the adopted reference system also play a role – by
its on, the quality of a reference system is dependent on how it is materialized, or what (and
how many) are the reference sources present in the field. Finally, the precision and accuracy
of these measurements depend on the rigidity of the link between all the individual images
together – and this is ruled by the determination of geometric distances between the sources.

Using the CCD meridian circles such as Valinho’s or Bordeaux’s, for instance, it is possible to
obtain positions from ∼ 6 observations with mean precisions of ∼ 50 mas (or milliarcseconds).
If more observations are performed, it is feasible to obtain positions with mean precisions of
∼ 10 to 30 mas, depending on the target’s magnitude (the best range is V ∼ 9 to 14 mag).
Proper-motions can be obtained by these instruments with precisions better than 5 mas/yr,
using observation baselines of several years (e.g. [13]).

If instruments with bigger optics are adopted, and thus greater spatial resolution, such as the
ESO NTT telescope, it is possible to obtain positions and proper motions with more than ten
times the above quoted precisions. Also, these instruments enable reliable determinations of
stellar trigonometric parallaxes, which are the first steps towards the determination of physical
distances in the Universe.
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Abstract Linear mixed models were developed to handle clustered data, and these models have increased
significantly in the last fifty years. In general, the normality (or symmetry) of the random effects
is a common assumption, but this kind of assumption may be unrealistic, obscuring important
features of among-subjects variations.

We have extended the classical linear mixed model herein, allowing the random effects and
the random errors to jointly follow a multivariate skew–normal/independent distribution, and we
consider diagnostic analyses following the ideas from Cook’s well–known approach which is based
on the likelihood displacement. We developed local influence measures according to Zhu and
Lee’s (2001) approach for skew–normal/independent linear mixed model (SNI-LMM). Perturba-
tions schemes are discussed as well as the use the Mahalanobis distance for identifying potential
outlying observations. Finally, a real data set has been analyzed in order to illustrate the usefulness
of the proposed methodology.

Keywords: Mahalanobis distance, local influence, outliers

1. Introduction

Estimating the distance between two points or more general between objects of interest are
of fundamental concern different area as well as in statistical applications, for example, the
distance between two observations. In statistics, is usual to find applications based on the
Mahalanobis distance is a metric which is better adapted than the usual Euclidean distance to
settings involving non spherically symmetric distributions. It is more particularly useful when
multivariate distributions are involved.

Influence diagnostics techniques consist in evaluating the sensitivity of the parameter esti-
mates of a particular model when perturbation occurs in the data set or in the assumptions of
the model. Case deletion (Cook, 1977) is a common approach to analyze one or more fitted
models after excluding observations that is direct assessed by some metrics such as the likeli-
hood displacement and the Cook’s distance. This method is also known as the global influence
method. The influence of the ith observation on the parameter estimate can be assessed by
studying the difference between θ̂ and θ̂(i), where θ̂(i) denotes the maximum likelihood(ML)
estimate of θ obtained from the sample of size n − 1 excluding the ith observation. To assess
the influence of the ith case on the ML estimate θ̂, the basic idea is to compare the difference
between θ̂(i) and θ̂. The generalized Cook’s distance is defined as a standardized norm of
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θ̂(i) − θ̂, i.e.,
GDi = (θ̂(i) − θ̂)>M(θ̂(i) − θ̂), (1)

where M is a non-negative definite matrix. Another measure of distance between θ̂(i) and θ̂
is the likelihood displacement defined as LDi(θ) = 2{`(θ̂) − `(θ̂(i))}, where `(.) is the log-
likelihood function.

Cook (1986) proposed an unified approach for assessment of local influence in minor per-
turbations of a statistical model and it can be viewed as a generalization of the robustness
concept to study and detect the influential subsets of data. A alternative approach was pro-
posed by Zhu and Lee (2001) that is based on the EM algorithm, that requires the evaluation of
Q(θ|θ̂) = E[`c(θ|yc)|y, θ̂]. To evaluate the departure of the models, Cook (1986) proposed to
use the likelihood displacement that is defined below: let ω be a g×1vector of perturbation re-
stricted to some open subset of Rg. The perturbations are made in the likelihood function such
that it takes the form `(θ|ω), and consider ω0 such that `(θ|ω0) = `(θ). To asses the influence
of the perturbations on the ML estimate, one may consider the likelihood displacement

LD(ω) = 2{`(θ̂)− `(θ̂ω)},

where θ̂ is the ML estimate of θ under the proposed model and θ̂ω denotes the ML estimate
under the perturbed model.

The multivariate skew-normal/independent (SNI) distribution (Branco and Dey, 2001) is
defined through the probability density function (pdf)

f(y) = 2
∫ ∞

0
φp(y|µ, u−1Σ) Φ(u1/2λ>Σ−1/2 (y− µ)) dH(u;ν), y ∈ Rp, (2)

where φp(·;µ,Σ) denotes the pdf of the p-variate normal distribution with a mean vector µ and
a covariance matrix Σ, Φ(·) denotes the cumulative distribution function (cdf) of the standard
normal distribution, U is a positive random variable with a cdf H(u;ν), where ν is a scalar or
parameter vector indexing the distribution of U . The distribution defined in (2) in denoted by
SNIp(µ,Σ,λ;H). When λ = 0, the SNI distribution in (2) reduces to the normal/independent
(NI) distribution. That is, Y ∼ NIp(µ,Σ;H); see Lange and Sinsheimer (1993).

2. The skew–normal/independent linear mixed model

In this section, we consider the skew–normal/independent linear mixed model (SNI-LMM). In
general, a normal linear mixed effects model (N-LMM hereafter) is defined as (Arellano–Valle
et al, 2005)

Yi = Xiβ + Zibi + εi, , , (3)
whereYi is a (ni×1) vector of observed continuous responses for sample unit i, Xi of dimension
(ni×p) is the design matrix corresponding to the fixed effects, β of dimension (p×1) is a vector
of population-averaged regression coefficients called fixed effects, Zi of dimension (ni × q) is
the design matrix corresponding to the (q × 1) random effects vector bi, and εi of dimension
(ni × 1) is the vector of random errors. It is assumed that the random effects bi and the
residual components εi are independent with bi

iid∼ Nq(0,D) and εi
ind∼ Nni(0,Σi). The q × q

covariance matrix D may be unstructured or structured. The ni × ni covariance matrices
Σi = Σi(γ), i = 1, . . . ,m, are typically assumed to depend on i through their dimension,
being parameterized by a fixed, generally small, parameter set γ as, for instance, with an AR(1)
covariance structure. As in Lachos et al. (2009), the SNI-LMM is defined by considering

bi
iid∼ SNIq(0,D,λ;H) and εi

ind∼ NIni(0, σ2
eRi;H), i = 1, . . . ,m. (4)
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From (??), we can write the SNI-LMM as follows

Yi|bi, Ui = ui
ind∼ Nni(Xiβ + Zibi, u−1

i σ2
eRi), (5)

bi|Ti = ti, Ui = ui
ind∼ Nq(∆ti, u

−1
i Γ), (6)

Ti|Ui = ui
ind∼ HN1(0, u−1

i ), (7)

Ui
iid∼ H(ui;ν), (8)

for i = 1, . . . ,m, all independent, ∆ = D1/2δ, Γ = D−∆∆>, with δ = λ/
√

1 + λ>λ, and D1/2

is the square root of D containing q(q+1)/2 distinct elements, say α, andHN1(0, σ2) is the half-
N1(0, σ2) distribution. When Ui = 1 (i = 1 . . . ,m), the SNI–LMM reduces to the SN–LMM as
defined in Arellano–Valle et al. (2005), and if λ = 0, the SNI-LMM reduces to the usual NI-
MLM which has been discussed quite extensively in the the literature. The EM-type algorithm
requires the evaluation of Q(θ|θ̂) = E[`c(θ|yc)|y, θ̂] =

∑m
i=1Qi(θ|θ̂), where the expectation is

taken with respect to the joint conditional distribution of b, u and t, given y and θ̂. Thus, we
have that Qi(θ|θ̂) = Q1i(β, σ2

e |θ̂) +Q2i(α,λ|θ̂), where Q1i(β, σ2
e |θ̂) = −1

2 log |σ2
eRi|− ûi

2σ2
e
(yi−

Xiβ)>R−1
i (yi − Xiβ) + 1

σ2
e
(yi − Xiβ)>R−1

i ziûbi − 1
2σ2
e
tr
(
R−1
i ziûb2

iz>i
)
, Q2i(α,λ|θ̂) =

−1
2 log |Γ| − 1

2tr
(
Γ−1ûb2

i

)
+ ∆>Γ−1ûtbi − ût2i

2 ∆>Γ−1∆, with ûi, ûbi, ûb2
i, ûtbi and ût2i

i = 1, . . . ,m, are all as given in Lachos et al. (2009).

3. Local influence

Consider a perturbation vector ω in an open region Ω. To apply the local influence approach,
we consider Q(θ,ω|θ̂) = E[`c(θ,ω|Yc)|y, θ̂], where `c(θ,ω|Yc), θ ∈ Rh, be the complete-data
log-likelihood of the perturbed model. We consider the following perturbation schemes:
1. Perturbation of case weights: The complete-data log-likelihood function (perturbed
Q-function) is given by Q(θ,ω|θ̂) =

∑m
i=1wiQ1i(β, σ2

e |θ̂) +
∑m
i=1wiQ2i(α,λ|θ̂), where ω =

(ω1, . . . , ωm)> is an m× 1 vector.
2. Perturbation of the scale matrix D:To study the effects of departure from the assumption
regarding the scale matrix D of the random effects, we consider the following perturbation
∆(ωi) = ω

−1/2
i ∆ and Γ(ωi) = ω−1

i Γ.
3. Perturbation of explanatory variables: Here is perturbed explanatory matrix Xi(ω) =
(xi1, . . . ,xiu(ωi), . . . ,xip), where xiu(ωi) = xiu + ωi1ni , u = 1, . . . , p, xiu is the uth column of
the matrix Xi, and 1ni is an ni × 1 vector of ones.
4. Perturbation of response variables: A perturbation of the response variables (y>1 , . . . ,y>n )>
is introduced by replacing yi by yi(ω) = yi + ωi1ni , i = 1, . . . ,m.

4. Application

We illustrate the developed method with the Framingham cholesterol data set from Zhang and
Davidian (2001). We fit a LMM model to the data as specified by Zhang and Davidian (2001)

Yij = βo + β1sexi + β2agei + β3tij + b0i + b1itij + εij , (9)

where Yij is the cholesterol level, divided by 100, at the j-th time for subject i; tij is (time −
5)/10, with time measured in years from the start of the study; agei is age at the start of the
study; sexi is the gender indicator (0 = female, 1 = male). Thus, xij = (1, sexi, agei, tij)>,
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bi = (b0i, b1i)> and Zij = (1, tij)>, i = 1, . . . , 200. First, we have fitted the SNI-LMM
for the Framingham cholesterol data set. Although not being formal tests, as in Zhang and
Davidian (2001), we compare the SNI-LMM and the NI-LMM (specifically, models normal,
t-Student, slash and contaminated normal) by inspecting some information criteria. Next, we
have identified influential observations for the Framingham cholesterol data set.

Now, we revisit the Framingham cholesterol data in order to study the local influence ap-
proach in the context of SNI-LMM. In our analysis we will assume SN, ST, SSL and SCN
distributions from the SNI class for comparative purposes. In order to detect outlying obser-
vations, we use the Mahalanobis distance

d2
i (θ̂) = 1

σ̂2
e

ê>i R−1
i êi + µ̂>biD̂

−1
µ̂bi = d̂2

ei + d̂2
bi , (10)

We can use as cutoff points the quantile of the distribution of d2
i . Figure 1 displays these dis-

tances for the four fitted models. The cutoff lines correspond to the quantile υ = χ2
4(ξ), with ξ =

0.99.We can see from these figures that observations 8, 15, 26, 69, 74, 90, 111, 122, 138, 146, 160, 162, 174, 175
and 187 appear to be outliers.
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Figure 1: Index plots of the Mahalanobis distances for the four fitted models.

The estimated distances d2
ei (Error) and d2

bi (Random Effect–R.E.), obtained from (10),
provide useful diagnostic statistics for identifying subjects with outlying observations. Figure
2 presents these diagnostic statistics for SN-LMM. The observations 69, 90, 138, 145 and 175
presents large value of d2

ei , suggesting an e-outlier. Moreover, observations 8, 26 and 160 present
large values of d2

bi suggesting a b-outlier. The d2
bi plots gives some indication that observations

2, 131 and 172 are possibly a b-outliers, which cannot be concluded from Figure 1. For SNI
distributions with heavy tails, we observed the same results and so they are not shown here.

Perturbation of case weights: From Figure 3 is noted that under for the four fitted models,
the observation 39 is identified as influential. As expected, the influence of such observation is
reduced when we consider distributions with heavier tails than the skew-normal ones.
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Figure 2: Estimated d2
ei (error) and d2

bi (R.E.) to the skew-normal fit.
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Figure 3: Index plots of M(0) under case weights perturbation for the four fitted models. The
horizontal lines delimit the Lee and Xu (2004) benchmark for M(0) with c∗ = 5.

References

[1] Arellano-Valle, R. B., Bolfarine, H. and Lachos, V. H. (2005). Skew-normal linear mixed models, Journal of
Data Science, 3, 415-438.

[2] Branco, M. D. and Dey, D. K. (2001). A general class of multivariate skew-elliptical distribution. Journal of
Multivariate Analysis 79: 93-113.

[3] Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18.

[4] Cook, R. D. (1986). Assessment of local influence (with discussion), Journal of the Royal Statistical Society,
Series B, 48, 133-169.

[5] Lachos, V. H., Ghosh, P. and Arellano–Valle, R. B. (2009). Likelihood based inference for skew–
normal/independent linear mixed models, Statistica Sinica.



214 Filidor Vilca, Camila Borelli Zeller, and Victor Hugo Lachos

[6] Lange, K. and Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust
regression, Journal of Computational and Graphical Statistics, 2, 175-198.

[7] Zhang, D. and Davidian, M. (2001). Linear mixed models with flexible distributions of random effects for
longitudinal data, Biometrics, 57, 795-802.

[8] Zhu, H. and Lee, S. (2001). Local influence for incomplete-data models, Journal of the Royal Statistical
Society, Series B, 63, 111-126.



DGA 2013, pp. 215 – 217.

Solving the Distance Geometry Problem
by the Hyperbolic Smoothing Approach

Adilson Elias Xavier1 and Helder Manoel Venceslau2

1Federal University of Rio de Janeiro - Brazil, adilson@cos.ufrj.br

2Federal University of Rio de Janeiro - Brazil, heldermv@cos.ufrj.br

Abstract The geometrical distance problem in graphs is characterized by determining the positions of the
nodes in a Euclidian space, according to the given distances associated with the arcs. It is a non-
convex and non-differentiable problem, having a myriad of local minima. The presented methodol-
ogy addopts a smoothing strategy named Hyperbolic Smoothing Technique. Computational results
obtained in the resolution of large instances of a difficult canonic problem show the efficiency and
robustness of the method. The geometrical distance problem has a relevant application in the
determination of geometrical structures of proteins.
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1. Solving the DGP by the HS Approach

The presented methodology adopts a smoothing strategy named Hyperbolic Smoothing Tech-
nique. By a smoothing approach, we fundamentally mean the substitution of an intrinsically
non-differentiable problem by a C∞ differentiable alternative. In the Hyperbolic Smoothing
(HS) methodology, the solution is obtained by solving a sequence of smooth problems which
gradually approaches the original one.

First, we will consider the smoothing of the absolute value function |u |, where u ∈ R.
For this purpose, for γ > 0, let us define the function

θ(u , γ ) =
√
u2 + γ2 (1)

The considered Distance Geometry problem has the following specification. Let G = (V,E)
denote a graph, in which for each arc (i, j) ∈ E, it is associated a measure aij > 0. The
problem consists of associating a vector xi ∈ Rn for each knot i ∈ V, basically addressed
to represent the position of this knot into a n−dimensional space, so that Euclidean distances
between knots, ‖xi − xj‖, corresponds appropriately to the given measures aij :

minimize f(x) =
∑

(i,j)∈E
( ‖xi − xj‖ − aij)2. (2)

This formulation presents the non-differentiable property due the presence of the Euclidean
norm term. Moreover, the objective function is non-convex, so the problem has a large number
of local minima. For solving the problem (2) by using the HS technique it is only necessary to
use the function θ(u , γ ) and to take u = ‖xi − xj‖ :
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minimize fs(x) =
∑

(i,j)∈E
( θ(‖xi − xj‖, γ) − aij)2. (3)

Besides its smoothing properties, Xavier [6] shows the important convexification power of
the function θ :

Proposition 1: There is a number γ̄ such that, for all values γ > γ̄, the Hessian matrix
∇2fs(x) will be positive definite.

Souza [4] and Souza et al [5] considers an alternative formulation, where the distances ‖xi−
xj‖ must be inside given intervals [li,j , ui,j ] :

minimize f(x) =
∑

(i,j)∈E
max[(lij − ‖xi − xj‖ ) , 0] +

∑
(i,j)∈E

max[(‖xi − xj‖ − uij) , 0]

By using function φ(y, τ) =
(
y +

√
y2 + τ2

)
/2 in the place of function max(0, y), and

by using function θ(u) in the place of the Euclidean distance u = ‖xi − xj‖, it is possible
to obtain the smooth formulation:

minimize fs(x) =
∑

(i,j)∈E
φ(lij − θ(‖xi − xj‖ , γ), τ) +

∑
(i,j)∈E

φ(θ(‖xi − xj‖ − uij , γ), τ)

Souza [4] and Souza et al [5] extends the previous theoretical result of Proposition 1 showing
the convexification of the above problem for all values γ > max(i,j)∈E uij .

In order to show the computational properties of the HS methodology, we took a traditional
test problem considered in: Moré and Wu [3], Hoai and Tao [1], Macambira [2] and Xavier [6].
This instance is a synthetic problem, where the knots are located on the intersection of s
planes that cut a cube in the three principal directions in equal intervals.

Following Moré and Wu [3], the knot positions are refereed by their coordinates indexes
{(i1, i2, i3), 0 ≤ i1 ≤ s, 0 ≤ i2 ≤ s, 0 ≤ i3 ≤ s}. The relative position i of the knot xi is
given by the rule i = 1 + x1 + si2 + s2i3. The distances aij associated to the arcs (i, j) are
exactly given by aij = ‖ xi − xj ‖2 for each arc (i, j) ∈ S, where S = {(i, j) || i− j |< s2.}
The set of the m = s3 knots is represented by x = (x1, . . . , xm) ∈ R3s3

. So, the problem has
n = 3s3 components and p = s5 + s3 + s arcs.

Table 1 presents the computational results produced by the HS methodology. The numerical
experiments have been carried out on a Intel Core i7-2620M Windows Notebook with 2.70GHz
and 8 GB RAM. The programs are coded with Intel(R) Visual Fortran Composer XE 2011
Update 7 Integration for Microsoft Visual Studio* 2010. The unconstrained minimization
tasks were carried out by means of a conjugate gradients algorithm employing the Fletcher &
Reeves updating formula from the Harwell Library, routine VA08ad, obtained in the site:

(www.cse.scitech.ac.uk/nag/hsl/).
The initial smoothing parameter γ1 was fixed γ1 = 10. In all experiments, the decreasing

rate parameter ρ of the parameter γ was fixed ρ = (10)1/32 and the number of iterations
assumed the value equal to 108. Ten different randomly chosen start points were used.

The columns of Table 1 show the number of splits of the cube (s), the number of knots
(m = s3), the number of variables of the problem (m = 3 s3), the number of arcs (p), the
occurrences of correct solutions obtained in 10 tentative solutions (Occur.), the average value
of the correct solutions (fMed), the mean CPU time (Time) given in seconds associated to
10 tentative solutions, and, whenever considered relevant, the occurrences of correct solutions
obtained in 100 tentative solutions using a non smoothed version (Occ.n.s.) .
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s m = s3 n = 3s3 p Occur. fMed Time Occ.n.s.
3 27 81 198 0 - 0.1 8
4 64 192 888 6 0.27E-6 0.7 5
5 125 375 2800 8 0.29E-5 2.8 7
6 216 648 7110 8 0.19E-4 7.6 4
7 343 1029 15582 5 0.16E-4 19 5
8 512 1536 30688 8 0.29E-3 45 3
9 729 2187 55728 6 0.86E-3 97 0
10 1000 3000 94950 7 0.95E-3 45 1
11 1331 3993 153670 6 0.17E-2 81 0
12 1728 5184 238392 8 0.15E-1 143 0
13 2197 6591 356928 7 0.32E-1 222 -
14 2744 8232 518518 8 0.18E-1 380 -
15 3375 10125 733950 6 0.65E-1 543 -
16 4096 12288 1015680 7 0.42E-1 835 -
17 4913 14739 1377952 6 0.16E0 1270 -
18 5832 17496 1836918 7 0.21E0 1853 -
19 6859 20577 2410758 8 0.24E0 2335 -
20 8000 24000 3119800 8 0.59E0 3187 -

Table 1: Results of HS Technique applied to Moré-Wu Instance

In view of the computational results obtained, where the proposed HS methodology per-
formed efficiently and robustly solving large instances, in comparison with Moré and Wu [3] or
Hoai and Tao [1], we believe that it, alone or in combination with another algorithm, can rep-
resent a possible approach for dealing with real applications involving large geometric distance
problems, such as protein folding problems.
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1. The Problem and the Background

A tetrahedron is a polyhedron in the three dimensional space R3 composed of four triangular
faces, three of which meet at each vertex. It is clear that the freedom of a tetrahedron is
six, and therefore, given four appropriate positive numbers there may exist infinitely many
non-isometric tetrahedra which four face areas are the given numbers. M. Mazur asked in [5]
whether or not a tetrahedron is uniquely determined by its volume V , circumradius R and
face areas A1, A2, A3, A4. A negative answer to this question was given by P. Lisoněk and
B. Israel in [4] through constructing two or more non-congruent tetrahedra that have the same
volume, circumradius and face areas. In [7] L. Yang and Z. Zeng showed that for the case
A2 = A3 = A4 a family of infinitely many non-congruent tetrahedra T(x,y) can be constructed,
where (x, y) varies over a component of a cubic curve, such that all tetrahedra T(x,y) share
the same volume, circumradius and face areas, and conjectured that for any six given positive
constants V,R,A1, A2, A3, A4 where A1, A2, A3, A4 are pairwise distinct there are at most nine
non-congruent tetrahedra can be constructed from the given parameters. One of the referees
to that paper investigated the problem and observed that in this case it always leads to an
equation R(u) = 0 of degree nine with at least one negative real root, where u is an edge of
tetrahedron, which means that the number of the tetrahedra satisfying the given parameters
is at most eight. In this paper, we present a proof to this fact by using the metric equations of
tetrahedra and symbolic algebra. Our main result is the following theorem.

Theorem 1. Given six positive numbers V,R,A1, A2, A3, A4. Then there are at most eight
tetrahedra with volume V , circumradius R and four face areas A1, A2, A3, A4, except in the
case that three of the values A1, A2, A3, A4 are equal.

2. A Sketch of Proof of the Main Theorem

The proof of this theorem relies on the following five known results concerning metric invariants
of tetrahedra and one new result on a necessary and sufficient condition for a tetrahedron to

∗Supported by the 973 Program No. 2011CB302402 of China, NNSFC Grant No. 61021004, and the MOE Project
No. 20110076110010 of China. Corresponding author: Zhenbing Zeng.
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have a right angle dihedron. To state the following lemmas we first introduce the notation for
metric invariants of tetrahedra. Let T = P1P2P3P4 be a tetrahedron in R3, Ai(1 ≤ i ≤ 4) the
area of the face Fi opposite with vertex Pi, that is,

F1 = P2P3P4, F2 = P3P4P1, F3 = P4P1P2, F4 = P1P2P3,

V the volume and R the circumradius of the tetrahedron, respectively. Let θi,j(1 ≤ i, j ≤ 4)
the dihedral angle formed by Fi and Fj , di,j the distance between vertices Pi and Pj , as shown
in the Fig. 1.

P
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3

P
4

P’
1

N
1

d
1,2

R

R

O

θ12

Figure 1: A tetrahedron T = P1P2P3P4 with circumcenter at O and circumradius R.

The following lemma shows that the algebraic sum of the projections of the three faces meet
at vertex Pi on the face Fi equals to Ai.
Lemma 1. Let T = P1P2P3P4 be a tetrahedron in R3. Then

A2 · cos(θ1,2) +A3 · cos(θ1,3) +A4 · cos(θ1,4) = A1,
A3 · cos(θ2,3) +A4 · cos(θ2,4) +A1 · cos(θ2,1) = A2,
A4 · cos(θ3,4) +A1 · cos(θ3,1) +A2 · cos(θ3,2) = A3,
A1 · cos(θ4,1) +A2 · cos(θ4,2) +A3 · cos(θ4,3) = A4.

(1)

Note that θi,j = θj,i in (1) for all i, j. The next lemma is a formula for computing volume of
tetrahedra through face areas and dihedra (cf. Lee [2]).
Lemma 2. Let T = P1P2P3P4 be a tetrahedron in R3 and V , Ai (1 ≤ i ≤ 4), θi,j , di,j (1 ≤
i, j ≤ 4) as described before. Then

3 d1,2 V = 2A3A4 sin(θ3,4), 3 d3,4 V = 2A1A2 sin(θ1,2),
3 d1,3 V = 2A2A4 sin(θ2,4), 3 d2,4 V = 2A1A3 sin(θ1,3),
3 d1,4 V = 2A2A3 sin(θ2,3), 3 d2,3 V = 2A1A4 sin(θ1,4).

(2)
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The following result is the well-known Cayley-Menger determinant (cf. [1] and[3]) for com-
puting the volume of a tetrahedron through its six edges.

Lemma 3. Let T = P1P2P3P4 be a tetrahedron in R3. Let gij = d 2
i,j (1 ≤ i, j ≤ 4) and

MV =



0 g12 g13 g14 1

g12 0 g23 g24 1

g13 g23 0 g34 1

g14 g24 g34 0 1

1 1 1 1 0


.

Then
V 2 = det(MV )/288, (3)

where det(·) is the determinant of a square matrix.

Let M be any square matrix and det(minor(M, i, j)) the determinant of the submatrix of
A obtained by removing its i-th row and j-th column. The following formula (cf. [2]) is a
generalization of the law of cosines to the tetrahedron.

Lemma 4. Let T = P1P2P3P4 be a tetrahedron in R3 and MV the matrix defined in Lemma 3.
Then

16AiAj cos(θi,j) + det(minor(MV , i, j)) = 0 (4)

The circumradius R of a tetrahedron is connected with the six edges by the following result,
see [1], [3] and [6].

Lemma 5. Let T = P1P2P3P4 be a tetrahedron in R3 and MV the matrix defined in Lemma 3.
Then

2R2 = −det(minor(MV , 5, 5))/ det(MV ). (5)

The following lemma is a new result to be proved in this paper. Note that we need only to
assure the existence of the polynomial F in the proof of Theorem 1.

Lemma 6. Let V the volume, R the circumradius, A1, A2, A3, A4 face areas, and θi,j(1 ≤
i, j ≤ 4) dihedral angles of the tetrahedron T = P1P2P3P4. Then there exists a polynomial
F (x−1, x0, x1, x2, x3, x4) of real coefficients satisfying that

θ1,2 = π/2⇔ F (V,R,A1, A2, A3, A4) = 0.

The proof of Theorem 1 can be sketched very briefly as following. Assume that V,R,A1, · · · , A4
are given positive real numbers and T = P1P2P3P4 is a tetrahedron which volume, circumradius
and face area are V,R,A1, · · · , a4 with respectively. If

F (V,R,A1, A2, A3, A4)=F (V,R,A1, A3, A2, A4)=F (V,R,A1, A4, A3, A4) = 0,

then θ1,2 = θ1,3 = θ1,4 = π/2 according to lemma 6. It is clear that no tetrahedron in R3 satisfies
this condition, so without loss of generality we may assume that F (V,R,A1, A2, A3, A4) 6= 0.
Let x = cos(θ1,2), y = cos(θ1,3). In the first step, we express all other cos(θi,j) into rational
fractions of x, y,A1, A2, A3, A4 by applying Lemma 1. Secondly, we use Lemma 2 to construct
six equations that connect the edges with face areas and cosine of dihedral angles, namely

gi,j = 4A2
kA

2
l (1− cos2(θk,l))

9V 2 = ℘i,j(x, y,A1, A2, A3, A4), (6)

(1 ≤ i < j ≤ 4, k, l ∈ {1, 2, 3, 4} \ {i, j}, k < l).
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In the third step, we construct the Cayley-Menger determinant and construct an equation
p1(x, y, V,A1, A2, A3, A4) that connects the cosine of dihedral angles with volume and face
areas according to Lemma 4, and construct an equation that relates the circumradius to
edges and hence to face areas and cosine of dihedral angles, according to Lemma 5, called
p2(x, y, V,R,A1, A2, A3, A4). Under the assumption −1 < x < 1, x 6= 0, these two equations
can be simplified to the following triangular form by symbolic computation.

r1 := e0 + e1 x+ e2 x
2 + · · ·+ e9 x

9 = 0, r2 := A(x) +B(x) y = 0, (7)

where e0, e1, · · · , e8, e9 are polynomial of V,R,A1, A2, A3, A4,

e9 = −512A9
2A

9
1(A2

4 −A2
1)(A2

3 −A2
1)(A2

4 −A2
2)(A2

3 −A2
2),

and A(x), B(x) are polynomials of V,R,A1, A2, A3, A4. In the final step, we prove the following
facts:

1. r1(1) = (A2 −A1)2 · r2
11 · r2

12 ≥ 0, r1(−1) = (A2 +A1)2 · r2
21 · r2

22 ≥ 0,

2. If ¬♦(A1, A2, A3, A4), then deg(r1, x) ≥ 1 and e0 6= 0.

where r11, r12, r21, r22 are polynomials of V,R,A1, A2, A3, A4, and ♦(A1, A2, A3, A4) stands for
(A2 = A3 = A4) ∨ (A1 = A3 = A4) ∨ (A1 = A2 = A4) ∨ (A1 = A2 = A3), This immediately
implies that r1(x) = 0 has at most eight roots in the interval (−1, 1). After getting x =
cos(θ1,2), y = cos(θ1,3), the six edges di,j of the tetrahedra can be obtained from (6).

3. An Unsolved Problem

Substituting randomly selected V,R,A1, · · · , A4 into r1(x) = 0 one may search the maximal
number of real roots of (7) with numerical computation. However, we have not found any
example of V,R,A1, · · · , A4 so that r1(x) = 0 has eight real roots in (−1, 1) yet. Fig. 3 shows
the record of a Monte Carlo experiment of this computation.

Figure 2: The numbers of real roots of r1(x) = 0 in (−1, 1) for 500 randomly generated examples.

We conjecture that the maximal number of tetrahedra in Theorem 1 is six.
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