
C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

C++ in 90 minutes

Antonio Mucherino

Laboratoire d’Informatique, École Polytechnique, Palaiseau

mucherino@lix.polytechnique.fr

Amphi Lagarrigue, École Polytechnique,

September 15th 2009, 8:30 - 10:00

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

What’s C++
what we are going to learn today

C++:

is a statically typed, free-form, multi-paradigm, compiled,
general-purpose programming language;

is regarded as a middle-level language, as it comprises a
combination of both high-level and low-level language
features;

was developed by Bjarne Stroustrup starting in 1979 at Bell
Labs as an enhancement to the C programming language
and originally named “C with Classes”;

was renamed to C++ in 1983;

is one of the most popular languages ever created;

is widely used in software industries.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Aim of this lecture
what you should know at the end of the lecture

The aim of this lecture is to discuss the main features of C++.

C++ basis

Control structures

Functions

Programming paradigms

Classes

Inheritance and polymorphims

This lecture includes more than 50 slides and it is going to last 90
minutes. So, we can devote less than 2 minutes per slide.

Note that general concepts will be learned,
that will be understood well only with practice.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Functions in C++
why are we starting with functions?

Whatever language you want to learn, they will always teach you,
at first, how to write the program known as Hello World!

What do we need to know for writing this program?

I/O system of C++

how to write a function in C++

It is clear the I/O is needed, but why should we know about
functions in C++?

Answer: Each program in C++ is a function, which is called main
function:

main()
{

// the program in C++ is written here
};

by the way the symbol // indicates that what follows is a comment for the

programmer, and it is ignored by the compiler.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

I/O in C++
let’s learn how to write now

How to write a string on the screen:

cout << "This is a message on the screen" << endl;

A few comments:

the symbol << indicates that all the things on the right must
be sent to the left;

cout refers to the console output;

it is defined in the header file iostream.h, that must be
therefore included in the programs that use the I/O system of
C++;

endl is the delimiter that indicates the end of the line.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Hello World!!
we are ready for our first program

This is our first program:

#include <iostream.h>

main()
{

// printing the message
cout << "Hello World!!" << endl;

};

If this program is compiled and executed, you will obtain the
following output:

Hello World!!

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Variables
where to store data

Variable: a symbol representing a quantity capable of assuming
any of a set of values.

Data type: it defines the set of values that a variable can assume.

Standard data types in C++:

integer: int

real: float (single precision) and double (double precision)

boolean: bool

character: char

This part of code declares an integer variable called a and
assigns to it the value 5:

int a;

a = 5;

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

A more interesting World
Hello World!! messages with dates

Let’s write a program that says “Hello World!!” and then it also
says today’s date:

#include <iostream.h>
main()
{

// declaring the variables
int day,month,year;

// assigning a value to the variables
day = 15; month = 9; year = 2009;

// printing the messages
cout << "Hello World!!" << endl;
cout << "Today’s date: ";
cout << day << "-" << month << "-" << year << endl;

};

The output of this program will always be:

Hello World!!
Today’s date: 15-9-2009

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Arrays
ordered lists of variables of the same type

If we have to store n variables of the same type, we can use n
different variables, but it is usually preferable to consider only one
array of variables.

In C++, we can declare an array as follows:

int a[10];
double v[3];
char ch[5];

and elements of an array can be assigned as follows:

a[3] = 1;
v[1] = 3.23;
ch[0] = ’x’;

Note that the elements of an array are ordered from 0 to n − 1,
where n is the dimension of the array specified during the
declaration.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Same program - different syntax
let’s use an array

#include <iostream.h>
main()
{

// declaring the variables
int date[3];

// assigning a value to the variables
date[0] = 15; date[1] = 9; date[2] = 2009;

// printing the messages
cout << "Hello World!!" << endl;
cout << "Today’s date: ";
cout << date[0] << "-" << date[1] << "-" <<

date[2] << endl;
};

Note that:

we could substitute an array with the three variables day,
month and year because they are all of the same kind;

the number of elements of the array is known a priori.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Static vs. Dynamic allocation of memory
do you know how long your array must be?

This is the declaration of an array where the memory is allocated
statically:

int a[10];

because the dimension of the array is 10 and it will always be 10.

What if we don’t know the dimension of the array when we
declare it?

Solution: dynamic allocation
int *a; // the dimension is not specified
...
a = new int [n]; // memory for a is allocated here
...
delete [] a; // the memory is deallocated here

Note that:

the variable n must be an integer that contains the desired
dimension for a;

n is defined during the execution of the program.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Pointers
I want to know where my data are

In C++,
int *a;

declares a pointer to integer variables.

Pointer: a variable that holds the address of another variable or
the first address of an array of variables.

Once the memory has been allocated
a = new int [n];

we can refer to the elements of the array as follows
a[i] = 1;

where i must be an integer variable between 0 and n-1.

Note that:

arithmetic operations can be performed on pointers (ex. a+1
is another pointer);

different pointers can refer to the same memory address.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Strings
let your program remember your sentences

In C++, a string can be declared as an array of characters:
char string[100];

Note that:

memory for strings can be allocated statically or dynamically;

in any case, string is a pointer to char;

the name string refers to a string, whereas any
string[i] refers to a character;

Example:
char string[5];
string[0] = ’C’; string[1] = ’i’;
string[2] = ’a’; string[3] = ’o’;
cout << string << endl;

produces as output:
Ciao

C++ provides addictional support for the management of strings
(I can’t tell you more, you would understand only after slide 30).

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Input arguments
how to pass information to our programs

Information to our programs can be passed through two variables,
an integer and a pointer to strings:

main(int argc,char **argv)
{

// the program in C++ is written here
};

These two variables contain particular values:

argc is the number of arguments passed to our program;

be aware that each program has at least one argument,
which is the program name;

argv points to an array of pointers char*, each of them
pointing to a string containing an argument;

the arguments are sorted as they are specified by the user.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Every day “Hello World!!”
another version of the program

Let’s put all what we just learned in the Hello World!! program.

We suppose that the current date is passed by the user through
the input arguments:

#include <iostream.h>
main(int argc, char **argv)
{

// printing the messages
cout << "Hello World!!" << endl;
cout << "Today’s date: ";
cout << argv[1] << "-" << argv[2] << "-" <<

argv[3] << endl;
};

If the user specifies as arguments I, dont and know, our output
will be:

Hello World!!
Today’s date: I-dont-know

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The product of numbers
a little more complex program

This program computes the product between two numbers:

#include <iostream.h>
#include <stdlib.h>

main(int argc, char **argv)
{

int a,b,p;
a = atoi(argv[1]);
b = atoi(argv[2]);
p = a*b;
cout << "The product is " << p << endl;

};

Note that:

atoi converts a string into an integer;

the header file stdlib.h must be included for using it;

even though we provide more than 2 numbers, the program
always computes the product of the first 2 only.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

for
how many times do you want to do it?

The for loop repeats a set of instructions a predetermined
number of times.

Its general format is:
for (initialization; condition; change) instruction(s);

where:

initialization defines the first value of the counter;

condition indicates when the loop must stop;

change indicates how to modify the counter at each
iteration.

An example:
for (i = 10; i > 5; i--)
{

cout << i << endl;
};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The product of numbers
let’s include a for loop

This program computes the product among n numbers:

#include <iostream.h>
#include <stdlib.h>

main(int argc, char **argv)
{

int i,p;

p = 1;
for (i = 1; i < argc; i++)
{

p = atoi(argv[i])*p;
};
cout << "The product is " << p << endl;

};

This program is an extention of the previous one, is this the best program for

computing products of numbers?

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

if
when your program takes decisions

The if keyword is used to execute an instruction or a block of
instructions only when a certain condition is satisfied.

Its general format is:
if (condition)
{

instruction(s) A;
}
else
{

instruction(s) B;
};

where:

condition is a logical condition;

A marks the instructions that are executed if condition is
true;

B marks the instructions that are executed if condition is
false.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The product of numbers
let’s use an if

This program computes the product among n numbers more
efficiently:

#include <iostream.h>
#include <stdlib.h>

main(int argc, char **argv)
{

int i,p;

p = 1;
for (i = 1; i < argc; i++)
{

if (p != 0)
{

p = atoi(argv[i])*p;
};

};
cout << "The product is " << p << endl;

};

is there a way to avoid useless steps?

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

while
do it until I’ll tell you

The while loop is used to execute an instruction or a block of
instructions while a given condition is satisfied.

Its general format is:
while (condition)
{

instruction(s);
};

where:

condition is a logical condition;

instruction(s) represents the instruction or the block of
instructions that are executed while condition satisfied.

Note that there is also another kind of loop that is called
repeat . . . until.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The product of numbers
let’s use a while loop

This program computes the product among n numbers more
efficiently:

#include <iostream.h>
#include <stdlib.h>

main(int argc, char **argv)
{

int i,p;

i = 1; p = 1;
while (i < argc && p != 0)
{

p = atoi(argv[i])*p;
i = i + 1;

};
cout << "The product is " << p << endl;

};

Ok, this is efficient enough

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Functions
let’s discuss a little more on functions

We already know that all the instructions of a program must be
included into a C++ function called main.

A more general example of function in C++ is:
int funct(int a,double *b,char *c);

Note that:

the function has a returning value, whose data type is
specified on the left of the function name;

the list of input arguments of the function is after the function
name, between parentheses.

Important:

new copies of the variables are placed in memory when the
function is called, so that variables modified inside the
function are unchanged outside;

there is actually a way for having a variable modificable
inside a function, but we will not discuss about this.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The function prod
we split the program in two functions

This is a C++ function that computes the product among n
numbers:

int prod(int n, int *a)
{

int i,p;

i = 0; p = 1;
while (i < n && p != 0)
{

p = a[i]*p;
i = i + 1;

};

return p;
};

In order to call prod when executing another function (like the
function main), we need to use the following syntax:

p = prod(n,a);

where n is an integer and a is a pointer to integers.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The function prod
we split the program in two functions

This is the new main function:

#include <iostream.h>
#include <stdlib.h>

int prod(int n, int *a);

main(int argc, char **argv)
{

int i,n,*a,p;

n = argc - 1;
a = new int [n];
for (i = 0; i < n; i++) a[i] = atoi(argv[i+1]);
p = prod(n,a);
cout << "The product is " << p << endl;

};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Overload of functions
my functions have the same name

C++ allows to define more than one function with the same name.

For example, we may have two functions prod:
int prod(int a,int b);
int prod(int n,int *a);

where:

the first one computes the product between a and b;

the second one computes the product among the n elements
of a.

The compiler can understand which function to call on the basis
of the input arguments that are passed to the function.

This is a kind of polymorphism in C++.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Another version of our program
exploiting the overload

#include <iostream.h>
#include <stdlib.h>

int prod(int a,int b);
int prod(int n,int *a);

main(int argc, char **argv)
{

int i,n,*a,p;

n = argc - 1;
a = new int [n];
for (i = 0; i < n; i++) a[i] = atoi(argv[i+1]);
if (n == 2)
{

p = prod(a[0],a[1]);
}
else
{

p = prod(n,a);
}
cout << "The product is " << p << endl;

};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Procedural programs
when the program is split in functions

Main characteristics:

the program is divided in subprograms and subsubprograms,
each of them represented by a single function;

the data can be shared by all the functions;

each subprogram is a mathematical function, which, in
theory, provides the same output when the same input
arguments are given;

it is good when the considered problem has a well defined
solution, just like the problem of evaluating mathematical
functions;

easier to projet, preferable for small, medium-small sized
projects.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Object Oriented programs
multiple independent intelligent agents

Main characteristics:

the program is diveded in objects;

each object contains its data, and methods that may act on
these data (encapsulation);

objects are reusable self-containing programming modules;

objects can assume particular states, described by their
data, and methods (with the same list of arguments) can
provide different answers when called;

objects prevent accidents with data;

objects allow a simpler management of large-scale projects.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Definition of Class
this is the most important thing you’re learning today

What is a Class?

Classes define the common features of a group of objects;

they allow the definition of a new data type;

they also allow to define methods that manipulate the new
generated data type;

classes are at the basis of the Object-Oriented programming.

Important to note: every time a new object is declared, it has a
concrete existence in the memory of the computer.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Class
An example

This code defines a class called list:

class list
{

int n;
int *v;

int sum();
int prod();
void remove(int x);

};

All the objects belonging to this class contain an integer n and an
array of integers v, together with the three methods sum, prod
and remove.

Note that: all the members of a class are private by default (only the other

class members can access to it), the keyword public must precede all the

members that needs to be public.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Class
An example

In this case all the methods are public:

class list
{

int n;
int *v;

public:
int sum();
int prod();
void remove(int x);

};

Data hiding helps the programmer to reduce memory errors,
because only the methods that are allowed to use the data can
access them.

Somebody says that the real purpose of Object-Oriented
programming is data hiding

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Class
how to refer to data and methods

Once a class has been defined, how do I declare an object of that
class?

list l;

Once an object has been declared, how do I access its data?

l.n = 1;
l.v[0] = 0;

How can I say to the compiler that this is the code for the method
sum belonging to the class list?

int list::sum(void)
{

// the code for the method goes here
};

How do I call this method?

mysum = l.sum();

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Constructors and Destructors
how to construct and how to destroy an object

In many cases, before using an object, the data it contains need
to be initialized.

This class contains a constructor and a destructor:
class list
{

int n;
int *v;

public:
list(); // constructor
˜list(); // destructor
int sum();
int prod();
void remove(int x);

};

They are two methods of the class. They are called automatically
when the object is created (constructor) or when the object is
deleted (destructor).

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Constructors and Destructors
how to construct and how to destroy an object

This is the code for a constructor:

list::list()
{

...

};

and this is the code for a destructor:

list::˜list()
{

...

};

In our example, memory needs to be assigned to the array of
integers v.

How can we say to the constructor how much memory we need?

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Parameterized constructors
construct it as I tell you

class list
{

int n;
int *v;

public:
list(int dim); // constructor
˜list(); // destructor
int sum();
int prod();
void remove(int x);

};

This can be the code for the parameterized constructor:
list::list(int dim)
{

n = dim;
v = new int [dim];
for (int i = 0; i < dim; i++) v[i] = 0;

};

Again, the purpose of this example is to clarify the presented concepts,
there are actually other solutions in C++ for the management of lists.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Parameterized constructors
construct it as I tell you

class list
{

int n;
int *v;

public:
list(int dim); // constructor
˜list(); // destructor
int sum();
int prod();
void remove(int x);

};

This can be the code for the parameterized constructor:
list::list(int dim)
{

n = dim;
v = new int [dim];
for (int i = 0; i < dim; i++) v[i] = 0;

};

Again, the purpose of this example is to clarify the presented concepts,
there are actually other solutions in C++ for the management of lists.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

A theoretical class
let’s define a class that we’ll consider in the following examples

In the following, we will consider the class instrument:

class instrument
{

int type;
char name[100];
double cost;

public:
instrument();
˜instrument();
int method1(double x);

};

It represents the class of musical instruments, where:

the data are represented through type, name and cost;

instrument() and ˜instrument() are the constructor
and the destructor;

method1 is a method of the class.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Arrays and Pointers of Objects
we can treat the objects as the predefined data types

Arrays of objects and pointers to objects can be used, as in the
following example:

main (int argc,char **argv)
{

instrument band[10];
instrument *m;

...

cout << "Type of first instrument in band = ";
cout << band[0].type << endl;

...

m = new band [100];

...

delete [] m;
};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Friend functions
classes’ friends

Functions that are not member for a class can access the private
data of the class if they are declared as friend of the class.

class instrument
{

int type;
char name[100];
double cost;

public:
instrument();
˜instrument();
int method1(double x);

friend int func(instrument a,instrument b);
};

In the function func, the members of the class can be accessed
through the syntax a.type, a.name, etc.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Inheritance
this is very important in object-oriented programming

Inheritance allows to create classes which are derived from other
classes, so that they automatically include some of its parent’s
members, plus its own.

Example: this class is derived from instrument:

class guitar : instrument
{

char strings[6];

public:
void set_strings(strings);
...

};

The data and the methods in instrument are inherited by
guitar.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

public, private and protected
three different behaviors for the class members

Public

public members are accessible by their own class and
by any other class;

Private

private members are accessible by their own class only;
any other class, even derivate classes, cannot access
them;

Protected

protected members are accessible by their own class;
derivate classes can also access them;
other classes cannot access them.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Polymorphism in execution
the second type of polymorphism in C++

The overload of functions allows the polymorphism in compilation
in C++.

What about the polymorphism in execution?

a method in a class can be defined as virtual;

this means that all the derived classes can have their local
implementation of the method;

during the execution, the implementation of the method is
chosen depending on the pointer type which is used to
invoke the method;

note that pointers to base classes can also point to derived
classes.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Example of polymorphism in execution
definition of the classes

class instrument
{

int type; char name[100]; double cost;

public:
instrument(); ˜instrument();
...
virtual double get_cost(void);

};

class guitar : instrument
{

char strings[6];
...
virtual double get_cost(void);

};

class piano : instrument
{

char keys[88];
...
virtual double get_cost(void);

};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Example of polymorphism in execution
an example of main function

main ()
{

instrument *pointer;
guitar g;
piano p;

pointer = &guitar;
guitar_cost = (*pointer).get_cost();
...

pointer = &piano;
piano_cost = (*pointer).get_cost();
...

};

Note that

(*pointer).get_cost()

is equivalent to

pointer->get_cost().

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Handling exceptions
I didn’t want this to happen!

There might be situations in which a program is not able to
proceed its execution.

For example:

an input argument that was expected to be positive is
instead negative;

there is no memory enough on the computer for all the
arrays needed to the program;

. . .

What can we do when we have these exceptions?

The management of exceptions in C++ is possible by using the
three keywords

try

throw

catch

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Handling exceptions
An example

In order to catch exceptions, we need to place a portion of code
under exception inspection:

try
{

if (n < 0) throw 0;
};

If we discover an exception, we have to use the keyword throw,
that accepts an argument.

The following portion of code must be located just after try and it
describes how to handle the exceptions:

catch (int i)
{

if (i == 0)
{

cout << "Wrong input parameter: n" << endl;
return 1;

}
...

};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Bugs
are there bugs in your program?

A software bug is the common term used to describe an error,
flaw, mistake, failure, or fault in a computer program that produces
an incorrect or unexpected result, or causes it to behave in
unintended ways.

Why are there bugs around?

It’s our fault!

Bugs are often caused by:

bad software designs (incorrect class definitions, . . .);

mistakes in the code (a + operator used instead of a
− operator, . . .).

In order to reduce the number of bugs in our programs, we can
follow some important rules when programming.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Tips for the programmer
some good rule

A way to reduce the number of bugs in our programs is to follow
these three simple rules:

code clear to read
it is not only important that our compiler understands
our codes, it is also important that the programmer, and
everybody else who knows the syntax, can read it;

indentation
it’s an efficient way to emphasize where blocks of code
start and end;
it helps in producing a clearer code, but it’s not the only
thing to do for having a clear code;

comments
they allow the programmer to take notes;
they are important for who writes the program, and they
are very important for who reads the code of the
program.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The International Obfuscated C Code Contest
obfuscate = to darken

Goal of the Contest:

To write the most Obscure/Obfuscated C program under the
rules below.

To show the importance of programming style, in an ironic
way.

To stress C compilers with unusual code.

To illustrate some of the subtleties of the C language.

To provide a safe forum for poor C code. :-)

http://www.ioccc.org/

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

The International Obfuscated C Code Contest
An example: details can be found on the official web site

This code:

can produce as result:

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Compiling
generating the machine code

For Linux/Unix users:

g++ -o myprog myprog_p1.cpp myprog_p2.cpp

Note that:
g++ is the C++ GNU Compiler, it is free and it is usually available
on all Linux/Unix machines.

For Windows users:
you can download and install on your pc

the version for Windows of the GNU compiler:
http://gcc.gnu.org/install/specific.html#windows

Microsoft Visual C++ (some versions are free):
http://msdn.microsoft.com/en-us/visualc/

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Note that . . .
. . . the codes showed in the lecture are for teaching purposes only

When you will try to compile the program:

#include <iostream.h>

main()
{

// printing the message
cout << "Hello World!!" << endl;

};

you will probably have the following warning message:

#warning This file includes at least one deprecated or antiquated header. Please

consider using one of the 32 headers found in section 17.4.1.2 of the C++

standard. Examples include substituting the <X> header for the <X.h> header for

C++ includes, or <iostream> instead of the deprecated header <iostream.h>. To

disable this warning use -Wno-deprecated.

How to avoid that?

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Note that . . .
. . . the codes showed in the lecture are for teaching purposes only

The warning is not given when trying to compile this version of the
program:

#include <iostream>

main()
{

// printing the message
std::cout << "Hello World!!" << std::endl;

};

or this version of the program:

#include <iostream>

using namespace std;

main()
{

// printing the message
cout << "Hello World!!" << endl;

};

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

Some References
where to continue your studies

Books

Herbert Schildt, C++: A Beginner’s Guide, 2nd edition,
McGraw-Hill.

Claude Delannoy, Apprendre le C++, Eyrolles.

Slides and notes on the Internet

cplusplus.com - The C++ Resources Network.

Leo Liberti, C++ Notes, available on the author’s web site.

YouTube

Brian Harvey, Object Oriented Programming, Berkeley
University channel on YouTube.

Jerry Cain, Programming Paradigms, Stanford University
channel on YouTube.

You can easily find other material by a Google search.

C++ in 90
minutes

A. Mucherino

What’s C++

Hello World!!

C++ basis

Control
structures

Functions

Procedural
programs

Obj-oriented
programs

Classes

Inheritance

Polymorphisms

Exceptions

The end

cout << "Good luck with C++!!" << endl;

Antonio Mucherino

	
	What's C++
	Hello World!!
	C++ basis
	Control structures
	Functions
	Procedural programs
	Obj-oriented programs
	Classes
	Inheritance
	Polymorphisms
	Exceptions
	The end

