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B katecTBe mociemHero mpuMepa paccMOTPUM 2-0THOPOHBIN rpady, MEIOTIHIT IBYMEPHYIO TTPO-
CTPAHCTBEHHYIO rpyiy cumMmerpun pgg2. Ero kom B 6aze RSCR [7] — krj. On Tak:ke mmeer nBe
CUMMETPUIECKU HE3aBUCUMbIE BEPIIWHBI U1 U U2, 00€ Bepiunbl creneru 5. Ero koopauHarmonmbe
nocaegosaresnsaoct umeiorca B OELS (8] mox momepamu A219529 u A301697, coorBeTcTBEHHO.
®parment sToro rpada n3o06paykeH Ha puc. 2. 6).

Jla rpada krj cupaBeqiuBa CaeayIoNias TEOPEMa.

TEOPEMA 5. Iycmo v1 u vo — dee sepwunvt & cmenenu 2pada krj. Tozda das n > 1
o0 " = O(modG)

16n " = 0(mod3) 18” L n =1,4(mod6)

errj(v1,n) = 18" Ln=1(mod3) , egrj(v2,n) = 16% ,n = 2(mod6)
167},)“ n = 2(mod3) 6n _ 1 n = 3(mod6)

18%“ = 5(mod6)
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On the manipulation of simple animations
by dynamical distance geometry

Antonio Mucherino (Rennes, France)
IRISA, University of Rennes 1
e-mail: antonio.mucherino@irisa.fr

AnHOTanus
A simple approach for the manipulation of objects’ animations, which is based on the
definition and the solution of a dynamical Distance Geometry Problem (dynDGP), is discussed.
An example in dimension 2 is presented where a video clip, designed to perform a psychological
study in 1944, is manipulated by including new distance constraints. The obtained solution
alters the perception of the “actions” performed in the original video clip.
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1. Introduction

Given a positive integer K > 0 and a graph G = (V xT, E, d), the dynamical Distance Geometry
Problem (dynDGP) [10] consists in finding a realization

z:(v,t) eV xT — al =x(vt) e RE

of G in the Euclidean space RX such that the following objective is minimized:
t

0_(££) — Z H|ZBU_$UH _d(uq?vt”’

d(ug, v
u,veV ( £ t)
t,qeT
where | - | is the absolute value of a real number, and || - || is the Euclidean norm.

The dynamical component of a dynDGP (when compared to a standard Distance Geometry
Problem (DGP)) is given by fact that the vertex set of the graph G is the set product between
two sets. The set V' contains “objects”, whose nature strongly depends on the problem at hand.
The second set T' actually represents the time as a sequence of discrete steps. Notice that, from
a formal point of view, the only difference between the DGP and the dynDGP is given by their
corresponding vertex sets. However, the study and use of subgraphs of G with fixed times t € T, as
well as with fixed objects v € V, can give important help in improving the performances of some
solution methods that were initially designed for the DGP [7].

The function z represents animations as a set of trajectories z(v,t), for every object v € V', and
for every time ¢ € T. A given function x may either be the representation of a known animation,
or a possible realization of the graph G. In order to manipulate an existing animations z’, a
transformation of its representation in distance space in performed, so that the manipulation of
the animation can subsequently be performed by introducing new distance constraints. The graph
G is obtained therefore by computing a subset of necessary distances extracted from the existing
animation z’. Then, new distance constraints are introduced in GG, and a new animation x”, which
is close as much as possible to 2’ while it also satisfies the new distance constraints, is generated
by solving a dynDGP.

Since it is likely that the distance constraints generated from z’ may not be fully compatible
with the new included distance constraints, a realization x” that satisfies the entire set of distances
included in G may not exist. For this reason, in the context of the dynDGP, the realization that
satisfies as much as possible all distance constraints is rather searched, i.e. a realization x” that
minimizes the function o(z”) but such that o(z”) > 0 [3].

For this reason, in the context of the dynDGP, a second weight m(ug,v;) is associated to every
edge of G, which represents the priority of every distance d(ug, v¢). The function o can be slightly
modified so that every term of the sum is multiplied by the corresponding priority m(ug,v:). In
this way, a different importance is given to every distance constraint: when the original distance
constraints (extracted from z’) and new included constraints are not fully compatible, for example,
one may want to give a higher priority to the new constraints, because they represent some features
one wants to include in the resulting animations. For a larger discussion on this point, the reader
is referred to [6].

There exist several methods for the solution of DGPs [5, 9]. The aim of this extended abstract is
to show how manipulations on two-dimensional animations can be performed via dynDGP and by
employing a method for local optimization for its solution. In fact, the constraints that are included
in G for manipulating the animations are not supposed to drastically modify them, otherwise there
would be no interest in using them as a base animation. Therefore, the original animations z’ can
be considered as good starting points for iterative methods for the solution of the dynDGP by local
optimization. In the experiments reported below, a Spectral Projected Gradient (SPG) method is
employed [1, 7.
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2. Heider and Simmel animation

In 1944, Heider and Simmel published an original psychological study about perception, where
panelists were asked to express the behavior they perceived while viewing a video clip depicting a set
of animated objects. Such objects had, for the first time in this study, no human qualities, but they
were rather represented with geometrical figures such as triangles (one larger and another smaller)
and one circle, together with third geometrical figure representing the “house”. The house was the
only inanimate object, unless “pushed” by the other objects. The performed experiments showed
that most people interpreted the movements of the geometrical objects as actions of animated
beings (in most cases persons). Some panelists were even able to “see” short stories out of the
object’s animation [4].

The trajectories of the moving objects were extracted from the original video clip? (starting
from frame 100). For every animated object, only the trajectory of their geometrical centers (center
of the circle, and centers of the triangles) were included in 2’; when creating the new video clip for
the obtained animation x”, then, every object was represented again with its original geometrical
figure. Notice, however, that these geometrical figures do not have any role in the determination of
the solutions. The original animation z’ is composed by 1800 frames; the “house” was not included
in the experiments.

The dynDGP instance related to Heider and Simmel’s video clip is generated with the idea of
avoiding contacts among the objects “taking part” to the scene. Given the animation 2’ extracted
from the video clip, the graph G is created by measuring some distances between the trajectories
of the animated objects. Then, new distance constraints are included in G so that the distance
between every pair of objects cannot be smaller than a given threshold. The environment where
the scene takes place is represented by a box having sides 1 by 1; the additional constraints avoid
that two objects get closer than the threshold A = 0.2. For more details on how the graph G can
be generated, the reader can refer to [10].

The video clip generated from the dynDGP solutions obtained with the SPG method are
available online®, together with other animations recently presented in other publications |7, 8].
In the particular context of the chosen animation, the new introduced distance constraints reflect
the fact that the “characters” in the video should not come too close to each other. Starting from
frame 250, the viewer can in fact see in the original animation 2’ that the two triangular objects are
attacking each other by sudden and repetitive approaches. In the dynDGP-derived animation z”,
instead, this approaching behavior is not pronounced, because of the imposed distance constraints.
However, the attacking effect is a way amplified with this modification. In fact, in the animation
2, it is not necessary for one triangle to approach “too much” the other to make it step back; a
much lighter approach is actually sufficient to have the stepping back effect over the other. Fig. 17
shows three key frames of the two animations 2’ and z”.

3. Conclusion

This extended abstract briefly discussed a simple method that, via the representation of an
original animation in terms of distances and the solution of a dynDGP, allows to manipulate
animations by imposing distance constraints. An animation that was initially used in a psychological
study was presented and manipulated with new imposed constraints, which were able to alter the
perception of the viewer about the “scene”.

The dynDGP was recently introduced as a subclass of the DGP where solutions methods may be
efficiently adapted to take advantage of the particular features of the problem [10]. Future works will

*https://www.youtube.com/watch?v=sx71BzHH7c8
*https://www.antoniomucherino.it/en/animations.php
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Puc. 17: Comparisons between some key frames in the original animation and the obtained
dynDGP solution. The new animation " is compared to the animation x’ at frames 278 (the
two triangles stare at each other), 283 (the big triangle attacks) and 290 (the small triangle
makes a step back): the same behavior is visible in x” but the two objects do not approach so
much to each other.

be focused on two particular points: (i) Can the dynDGP have benefits in the use of non-Euclidean
distances |2|, which might be able to better capture the dynamical component of these instances?
(77) Can other methods for optimization, or particularly designed for the DGP, be employed as
more efficient alternatives to SPG?
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OpeiiMoM KOHETHOMEDPHOTO THIL0EpTOBa MIPOCTPAHCTBA HA3BIBAIOT HAOOP BEKTODOB, JUHEHHAs
060/1049Ka KOTOPBIX 00pazyer Bcé mpocrpancTso. [lonarue dpeiima obobiaer nonarue 6asuca, Tak
KaK B OIIpejieJieHun HeT TpeboBaHus JIMHEHHOM HE3aBUCUMOCTH.

Habop BEKTOPOR P = {gpn},]yzl Ha3bIBAETC (PPEtiMOM BEIIECTBEHHOTO MJIN KOMILJIEKCHOTO TIPO-
crpancrtea HM | ecm cymectsyior xoncranTsl 0 < A < B < 0o Takue uTo ajs Beex © € HM |

N
Allz]* <) e, on)l? < Bllz||*.

n=1

B xonegnomepHOM mpocTpaHCTBe ompesesenne ¢dhpeiiMa SKBUBAJEHTHO MOJHOTE CUCTEMBI BEK-
TOPOB, TO ecTh span{p, }_, = HV.

Beimenum ciemyrornue Kiaaccsl ppeiiMoB:

b — orceemuud Ppetim, ecm A = B.

b — gpetim Iapcesana-Cmexaosa, ecim A = B = 1.

® — pasromeprwiti Ppetim, ecmn ||pp || = ||, 7|

® — pasnoyzosvruiti Ppetim, ecin © paBHOMEpHBIH U cymecTeyer 5 > 0 Takoe 4TO

s o)l = B v meex ! £

O — pasnoyzorvnwd gpetim Hapcesars (EPF), ecmu ® paproyrosbhbiii u dbpeiiv [apcesasis -
CrekJioBa.

Kaxerit dpeiim ompesesisser Tpu JUHEHHBIX ornepaTopa. Onepamop aHasu3a — TO ONepaTop
V :HM — HV, onpenesrennsrit coornomennsayvu (V), = (z,0,), n=1,...,N.

! AsTop momaepxan rpanTom PO®U 17-01-00138.



