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Abstract

We consider the Molecular Distance Geometry Problem (MDGP), which is the problem of finding
the conformation of a molecule from some known distances between its atoms. Such distances can
be estimated by performing experiments of Nuclear Magnetic Resonance (NMR). When particular
assumptions are satisfied, the problem can be discretized, and solved by employing an ad-hoc al-
gorithm called Branch & Prune (BP). We analyse and discuss possible parallel versions for the BP
algorithm, and we provide some computational experiments for the parallel version which appeared
to be the most promising. Computational experiments, performed on the nation-wide grid infras-
tructure Grid5000, show that the considered parallel version of the BP algorithm is able to solve very
large instances of the discretized MDGP. The experiments also show the scalability of the parallel
algorithm.

1 Introduction

The Distance Geometry Problem (DGP) [3, 7, 12, 14] is the problem of identifying the coordinates
of a set of points which satisfy a given set of constraints based on some relative distances between the
points. Let X = {x1, x2, . . . , xn} be a set of points in the three-dimensional space, and let us suppose
that, for some pairs of points xi and xj , with i 6= j, the distance dij between the points is known. The
DGP is the problem of finding the coordinates of the points in X such that

||xi − xj || = dij , (1)

where dij are the known distances.
In its basic form, the DGP is a constraint satisfaction problem. However, it is usually reformulated

as a global continuous optimization problem. The set of constraints (1) is transformed into a penalty
function, which is basically the sum of as many terms as the available constraints. Each term is able to
measure the satisfaction of each constraint: each constraint is satisfied if and only if the corresponding
term of the penalty function is zero. Therefore, finding the global minimum of such a penalty function
is equivalent to solving DGP instances. Over the years, different penalty functions associated to DGPs
have been proposed. One of the most used is the Largest Distance Error (LDE):

LDE(X) =
1

m

∑

{i,j}

| ||xi − xj || − dij |

dij

,
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where m is the total number of known distances.
We are interested in DGPs arising from biology. Distances between pairs of atoms of a molecule can

be estimated through experiments of Nuclear Magnetic Resonance (NMR), and the conformation of the
molecule can be identified by solving a DGP. This application is of relevant interest, because discovering
the conformation of a molecule can give insights on its dynamics, and therefore on its function. Molecules
of interest are proteins, which perform several vital functions in cells of living beings. The DGP related
to molecules is usually referred to as Molecular DGP (MDGP).

We consider the subclass of instances of the MDGP which can be discretized. Under certain as-
sumptions, indeed, the domain of the penalty function can be reduced from a continuous to a discrete
set. This does not reduce the complexity of the problem, because the MDGP is NP-hard even after the
discretization [9, 13]. However, the optimization problem to be solved gets combinatorial, and an ad-hoc
algorithm, called Branch & Prune (BP) [11], can be employed for its efficient solution. Under these
hypotheses, we refer to the problem as Discretizable MDGP (DMDGP) [9].

After the discretization, the domain of the penalty function can be seen as a binary tree containing
positions for the atoms of the considered molecule. The BP algorithm is based on the exploration of this
binary tree. At each iteration of the algorithm, two new positions for the current atom are computed,
and their feasibility is checked. Then, the search proceeds along branches where feasible positions are
found, whereas branches containing infeasible positions are pruned. This pruning phase allows to reduce
the branches of the binary tree very quickly, allowing the algorithm to focus its researches on the feasible
branches only.

In this short communication, we discuss different possible parallel versions of the BP algorithm. More-
over, we choose the version which seems the most promising, and we provide computational experiments
which show its capability in solving DMDGP instances into a reduced amount of time. The experiments
also show the scalability of the considered parallel version.

The remaining is organized as follows. In Section 2 we will give a short description of the DMDGP
and we will present the BP algorithm. In Section 3 we will discuss possible parallel versions of the BP
algorithm, and then we will focus our attention on only of them. Computational experiments will be
discussed in Section 4, and conclusions will be given in Section 5.

2 The sequential BP algorithm

Let us consider an instance of the MDGP. This instance can be represented through a weighted undirected
graph G = (V, E, d), where each vertex corresponds to an atom of the considered molecule, and there is
an edge between two vertices if and only if the relative distance between the two corresponding atoms is
known. The weight d associated to the edge corresponds to the numerical value of the distance.

The set of instances of the DMDGP contains all the instances of the MDGP satisfying the following
two assumptions, for a given ordering on V :
Assumption 1: E contains all cliques on quadruplets of consecutive vertices, i.e.

∀i ∈ {4, . . . , n} ∀j, k ∈ {i − 3, . . . , i} (j, k) ∈ E;

Assumption 2: the following strict triangular inequality

di−2,i < di−2,i−1 + di−1,i

holds for all i ∈ {2, . . . , n−1}. In practice, Assumption 1 ensures that the distances between each possible
pair of atoms in any quadruplet of consecutive atoms are known. Moreover, if Assumption 2 holds, there
cannot be triplets of consecutive atoms that are perfectly aligned. When these two assumptions are
satisfied for an entire conformation X , then, there exist only two possible positions in which each of its
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Algorithm 1 The BP algorithm (the sequential version on the right, and the parallel version on the left)

0: BP(in: i, n, d; out: sol)
0: counter = 0 // counter of violated distances
0: nsol = 0 // number of solutions

for (k = 0, 1) do

compute the kth atomic position for the ith

atom: x
(k)
i ;

check the feasibility of the atomic position x
(k)
i :

if (the atomic position x
(k)
i is feasible) then

sol(nsol, i) = k;
if (i = n) then

sol(nsol, ∗) contains a complete solution;
nsol = nsol + 1;

else

BP(i + 1,n,d,sol);
end if

end if

end for

return sol;

0: parallel BP(in: i, n, d, p; out: sol)
0: split the instance in p sub-instances:
0: compute i(k), n(k), d(k) (k = 0, . . . , p − 1);

for each process k = 0, . . . , p − 1 (in parallel) do

call sequential BP(i(k),n(k),d(k),sol(k));
end for

broadcast sol(k) to the other processes (cascade
schema);
sol = [sol(0), sol(1), . . . , sol(p−1)];
build the binary tree associated to sol;
remove infeasible solutions from sol;
return sol;

atoms can be placed, if the preceding atoms already have a fixed position. This leads to the definition of
a binary tree of possible atomic positions, where solutions to the problem can be searched [9]. For more
details, the reader is referred to [9, 10, 11].

All the positions on the binary tree are computed by exploiting the known distances from the three
preceding atoms. However, other distances dij may also be known (even though it is not required by
Assumptions 1 and 2), and this allows to check the feasibility of the computed positions. If x′

i is one
possible position for xi, then we can compare all the known distances between xi and xj , with j < i,
to the corresponding distances that can be computed between x′

i and each xj . If known and computed
distances match:

| ||x′
i − xj || − dij | < ε,

for a given tolerance ε > 0, then x′
i is feasible, otherwise it is not. We refer to this strategy for checking

the feasibility of the atomic positions as pruning test.
For solving instances of the DMDGP, we consider the BP algorithm [11], which is strongly based on the

binary tree structure of the combinatorial problem. In the sequential version of the algorithm, i represents
the current atom whose position is searched, n is the the total number of atoms of the considered molecule,
and d represents the set of known distances. The BP algorithm is invoked iteratively, and one of the
solutions to the problem is found when BP(n,n,d,sol) finds a feasible position for the last atom of the
molecular conformation. The given output is the binary matrix sol representing a set of complete paths
on the binary tree. This is sufficient for reconstructing the conformations for the molecule which are
solutions to the problem.

3 Possible parallel implementations for the BP algorithm

The BP algorithm is an intrinsically parallel algorithm. Since the basic idea is to explore a binary tree of
atomic positions, a possible parallel version of the algorithm could simply distribute the branches of the
binary tree among the processes involved in the computation, and then collect the different solutions from
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the various processes. However, even though all the sub-trees on the different processes can potentially
have the same size, the pruning phase might remove a different number of branches from each sub-tree,
in this way causing a non-balanced computational load on the processes. Therefore, even though this
parallel version of the algorithm is very natural and easily implementable, it does not ensure a good
scalability.

Another possible implementation for the BP algorithm is the following. A generic instance of the
DMDGP can be divided in many sub-instances which can be solved independently on different processes
by local calls to BP. This is also a classic approach to parallelize an algorithm, but, in this particular
case, it is not trivial. Indeed, while creating the sub-instances, distances regarding atoms assigned to
two different sub-instances are lost. However, such distances may be important for removing infeasible
solutions from the final solution set. Therefore, they need to be considered later when local solutions
are combined. This parallel version of the algorithm potentially have better scalability properties of the
previous one.

Given an instance of the DMDGP, p sub-instances can be generated and solved independently on p
different processes by BP. In order to combine the local solutions, a binary tree Tf can be considered,
which is formed only by branches which passed the pruning test during the sequential executions of BP.
Let us indicate with the symbol T k the binary tree containing the local solutions found by process k, with
0 ≤ k < p. Let Gk = (V k, Ek) be the corresponding undirected graph, where vertices v ∈ V k represent
atomic positions, and edges connect vertices related to consecutive atomic positions. For combining the
local solutions found by two processes k1 and k2 = k1 + 1, we can construct a new binary tree as follows.
Let V̂ be the set of vertices of the corresponding graph, which contains all the vertices v in V k1 and V k2 ,
where the vertices v of V k2 are also duplicated as many times as the number of leaf vertices in V k1 , and
new labels are assigned to them. The set of edges Ê is obtained similarly, and, for each leaf vertex vl of
V k1 , a new edge is added between vl and the various copies of the first vertex of V k2 . If this procedure
is performed recursively considering all the graphs Gk, then the final tree Tf is constructed. Distances
related to atoms previously assigned to different processes can be used for pruning branches of Tf and
removing infeasible solutions.

In the previous page, a sketch of this parallel version of the BP algorithm is given. The input and
output parameters are the same that are considered in the sequential version of the algorithm, plus the
number p of processes involved in the computation. Once the instance in input is split in p sub-instances,
p parallel executions of the sequential version of BP are performed. When all the executions are ended,
the found (local) solutions are given in output through sol(k). They are stored in terms of the binary
choices (0/1, left/right branch) that are made at each iteration of the algorithm.

After the execution of the local BP algorithms, the local solutions are collected and distributed to all
the processes. To this aim, we consider the cascade schema for the necessary communications among the
processes. This schema is very efficient, because it allows the spreading of all local solutions among the
processes in only log2 p phases of communication. In order to use this schema, the number p of considered
processes must be a power of 2.

4 Computational experiments

The computational experiments are carried out on the nation-wide grid infrastructure Grid5000 [2]. It is
a grid formed by various clusters geographically distributed in 9 different sites in France. Just recently,
a new site located in Brazil, Porto Alegre, has been added to the grid. Grid5000 connects more than
5000 cores. For more information about Grid5000, the interested reader can visit the official website
(https://www.grid5000.fr).

In our experiments, we consider a unique cluster of Grid5000 which is located in Lille, France, in order
to consider nodes of the grid with the same features. We use a SGI Altix Xe 310 cluster with 46 nodes,
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n m 1 2 4 8 16 32 64

1000 14338 0.09 0.04 0.03 0.03 0.02 0.02 0.03
2500 36795 0.56 0.30 0.17 0.12 0.10 0.09 0.09
5000 84195 3.21 1.30 0.78 0.54 0.40 0.37 0.36
7500 135475 4.73 3.15 1.83 1.25 0.99 0.88 0.93
10000 183444 13.38 5.49 3.57 2.49 1.99 1.72 1.57

Table 1: The CPU time, in seconds, needed for carrying out our computational experiments on a set of
artificial instances.

each of them composed by 2 CPUs (Intel Xeon E5440 QC 2.83 GHz, 4 MB, 1333 MHz). Summing up, this
cluster has 92 CPUs, and we use 64 of them in our experiments (because of the employed communication
schema, a power of 2 of processes must be considered). The reservation system for the resources of the
grid makes sure that the used CPUs are completely devoted to our experiments.

The local solutions found by each process are stored bit by bit on arrays of integer numbers. This
strategy allows for reducing the amount of data which needs to be exchanged by the processes. In
order to efficiently implement the needed bitwise operations, we choose to implement our parallel BP in
C programming language (GNU C compiler version 4.2.4). Moreover, we used the MPI library [5, 6],
version MPICH2 1.0.5p4, for performing an efficient communication among the processes involved in the
computation. The instances used in the computational experiences are artificially generated, so that they
resemble conformations of protein molecules [8].

Table 1 shows some computational experiments with three different instances, having size n from 1000
to 10000. For each instance, one sequential execution of BP is provided, as well as six parallel executions
in which a power of 2 processes p (with 2 ≤ p ≤ 64) is used. For each experiment, the total computational
time, expressed in seconds, is given in the table.

The experiments show that the considered parallel version of BP is able to find the solutions to
DMDGPs more efficiently. For all the experiments related to the same instance, we always obtained the
same final set of solutions, and, when the number p of processes involved in the computation increases,
this set of solutions is generally obtained in a shorter time. This reduction of time is more evident when
2 processes are used instead of 1, or 4 processes are used instead of 2. When p increases, the gain in
computational time is less evident and, in a few cases, executions with more processes took a time which
is slightly larger than the one needed for some executions with less processes. This is due to the fact that,
as p increases, the sub-instances considered on each process get smaller, whereas the number of branches
of the final binary tree Tf increases. As a consequence, the parallel part of the algorithm (the calls to
the sequential BPs) tends to be less expensive than the sequential part, in which all the processes work
on the same task: building Tf and giving in output the final set of solutions.

5 Conclusions

We discussed possible parallel versions of the BP algorithm, which we use for solving instances of the
DMDGP. Moreover, we presented one of such parallel versions in more details, and computational exper-
iments have been discussed. In the considered parallel version, instances of the problem are divided in
sub-instances that are solved independently by the various processes involved in the computation. Then,
after the communication of the local solutions, they are combined and the final set of solutions of the
original instance is found. The computational experiments showed the scalability of the proposed parallel
version of the BP algorithm.
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