
A Parallel Version of
the Branch & Prune Algorithm for

the Molecular Distance Geometry Problem
A. Mucherino∗ C. Lavor† L. Liberti‡ E.-G. Talbi∗

∗INRIA, Lille Nord Europe, France. Emails:antonio.mucherino@inria.fr, el-ghazali.talbi@lifl.fr
†Dept. of Applied Mathematics, State University of Campinas, Brazil. Email:clavor@ime.unicamp.br

†LIX, Ecole Polytechnique, Palaiseau, France. Email:liberti@lix.polytechnique.fr

Abstract—We consider the Molecular Distance Geometry
Problem (MDGP), which is the problem of finding the conforma-
tion of a molecule from some known distances between its atoms.
Such distances can be estimated by performing experiments
of Nuclear Magnetic Resonance (NMR). Unfortunately, data
obtained during these experiments are usually noisy and affected
by errors. In particular, some of the estimated distances can be
wrong, typically because assigned to the wrong pair of atoms.
When particular assumptions are satisfied, the problem can be
discretized, and solved by employing an ad-hoc algorithm called
Branch & Prune (BP). However, this algorithm has been proved
to be less efficient than a meta-heuristic algorithm when the
percentage of wrong distances is large. We propose a parallel
version of the BP algorithm which is able to handle this kind
of instances. The scalability of the proposed algorithm allows
for solving very large instances containing wrong distances.
Implementation details of the algorithm in C/MPI are discussed,
and computational experiments, performed on the nation-wide
grid infrastructure Grid5000, are presented.

I. I NTRODUCTION

The DISTANCE GEOMETRY PROBLEM (DGP) [4], [9], [18]
is the problem of identifying the coordinates of a set of points
which satisfy a given set of constraints based on some relative
distances between the points. LetX = {x1, x2, . . . , xn} be a
set of points in the three-dimensional space, and let us suppose
that, for some pairs of pointsxi and xj , with i 6= j, the
distancedij between the points is known. The DGP is the
problem of finding the coordinates of the points inX such
that

||xi − xj || = dij , (1)

wheredij are the known distances.
In its basic form, the DGP is a constraint satisfaction

problem. However, it is usually reformulated as a global
continuous optimization problem (refer, for example, to [2],
[8], [15]). The set of constraints (1) is transformed into a
penalty function, which is basically the sum of as many terms
as the available constraints. Each term is able to measure the
satisfaction of each constraint: each constraint is satisfied if
and only if the corresponding term of the penalty function
is zero. Therefore, finding the global minimum of such a
penalty function is equivalent to solving DGP instances. Over

the years, different penalty functions associated to DGPs have
been proposed. One of the most used is the Largest Distance
Error (LDE):

LDE(X) =
1

m

∑

{i,j}

| ||xi − xj || − dij |

dij

,

wherem is the total number of known distances.
We are interested in DGPs arising from biology. Distances

between pairs of atoms of a molecule can be estimated
through experiments of Nuclear Magnetic Resonance (NMR),
and the conformation of the molecule can be identified by
solving a DGP. This application is of relevant interest, because
discovering the conformation of a molecule can give insights
on its dynamics, and therefore on its function. Molecules of
interest are proteins, which perform several vital functions in
cells of living beings. The DGP related to molecules is usually
referred to as MOLECULAR DGP (MDGP).

Different techniques have been proposed for solving
MDGPs. The reader is referred to [12], [14] for a survey. In
this paper, we will consider the subclass of instances of the
MDGP which can be discretized. Under certain assumptions,
indeed, the domain of the penalty function can be reduced
from a continuous to a discrete set. This does not reduce
the complexity of the problem, because the MDGP is NP-
hard even after the discretization [11], [17]. However, the
optimization problem to be solved gets combinatorial, and an
ad-hoc algorithm, called BRANCH & PRUNE (BP) [13], can be
employed for its efficient solution. Under these hypotheses, we
refer to the problem as DISCRETIZABLE MDGP (DMDGP)
[11].

After the discretization, the domain of the penalty function
can be seen as a binary tree containing positions for the
atoms of the considered molecule. The BP algorithm is based
on the exploration of this binary tree. At each iteration of
the algorithm, two new positions for the current atom are
computed, and their feasibility is checked. Then, the search
proceeds along branches where feasible positions are found,
whereas branches containing infeasible positions are pruned.
This pruning phase allows to reduce the branches of the binary

tree very quickly, allowing the algorithm to focus its researches
on the feasible branches only.

A major issue arising when considering distances obtained
by NMR is the following. Experiments of NMR are usually
affected by noise and, as a consequence, wrong distances
might be provided. Some of the obtained distances, indeed,
could be assigned to the wrong pair of atoms, because of
noisy information or errors while performing the experiments
[5]. This brings to the definition of a set of constraints in
which some of them arewrong. Even a few distances assigned
to an incorrect pair of atoms can spoil the solutions to the
corresponding MDGPs. Indeed, if we require that one of the
wrong distances must be satisfied, this may result in the
violation of many other (good) constraints. In general, the
identification of wrong distances can be difficult [1].

In the BP algorithm, branches are pruned as soon as
one infeasible position is found. However, if the considered
instance contains at least one wrong distance, no branches can
pass the pruning test, and no solutions are found. A strategy
for overcoming this problem has been previously proposed in
[16]. The pruning phase of BP is modified so that branches
are pruned only after that a certain number of distances are
violated. A counter of violated distances is set up and updated
every time an atomic position is found to be infeasible. Then,
when the number of violated distances gets greater than a
certain predetermined threshold∆, the corresponding branch
is finally pruned. However, the BP algorithm can be quite
expensive when the threshold∆ is large. In [16], a comparison
between the BP algorithm and a meta-heuristic search showed
that the use of the meta-heuristic algorithm is preferable in
these cases, even though there is no guarantee that the found
solutions are optimal.

In this paper, we propose a parallel version of the BP
algorithm, which is able to efficiently manage instances of
the DMDGP where wrong distances are contained. The basic
idea is to divide each instance in many sub-instances, whose
solutions are successively combined in order to obtain the
solutions of the original instance. The proposed algorithmis
implemented in C programming language, and it makes use of
the MPI library [6], [7]. Experiments on the nation-wide grid
infrastructure Grid5000 [3] show that this parallel version of
BP is able to speed up the solution of DMDGPs containing
wrong distances.

The paper is organized as follows. In Section II we will
describe the DMDGP in more details, and we will discuss
the BP algorithm, where particular emphasis will be given
to the considered strategy for managing wrong distances.
In Section III we will present a parallel version of the BP
algorithm, and, in Section IV, some implementation details
of the proposed algorithm in a parallel environment are given.
Finally, computational experiments are presented in Section V,
and conclusions are drawn in Section VI.

II. T HE SEQUENTIAL BP ALGORITHM

Let us consider an instance of the MDGP. This instance
can be represented through a weighted undirected graph

G = (V, E, d), where each vertex corresponds to an atom
of the considered molecule, and there is an edge between two
vertices if and only if the relative distance between the two
corresponding atoms is known. The weightd associated to the
edge corresponds to the numerical value of the distance.

The set of instances of the DMDGP contains all the in-
stances of the MDGP satisfying the following two assump-
tions, for a given ordering onV :
Assumption 1: E contains all cliques on quadruplets of
consecutive vertices, i.e.

∀i ∈ {4, . . . , n} ∀j, k ∈ {i − 3, . . . , i} (j, k) ∈ E;

Assumption 2: the following strict triangular inequality

di−2,i < di−2,i−1 + di−1,i

holds for all i ∈ {2, . . . , n − 1}. In practice, Assumption 1
ensures that the distances between each possible pair of atoms
in any quadruplet of consecutive atoms are known. Moreover,
if Assumption 2 holds, there cannot be triplets of consecutive
atoms that are perfectly aligned. When these two assumptions
are satisfied for an entire conformationX , then, there exist
only two possible positions in which each of its atoms can be
placed, if the preceding atoms already have a fixed position.
This leads to the definition of a binary tree of possible atomic
positions, where solutions to the problem can be searched [11].

Let us consider a generic quadruplet of consecutive atoms
{xi−3, xi−2, xi−1, xi}. Because of Assumption 1, all the pos-
sible distances in the quadruplet are known. Moreover, there
are no aligned atoms, because of Assumption 2. In these
hypotheses, the cosine of the torsion angle among these four
atoms can be computed, and two values for the torsion angle
can be obtained from the value of its cosine. Therefore, if
we suppose that the three atomsxi−3, xi−2, xi−1 are already
placed somewhere, we can compute two possible positions for
the atomsxi. For more details, see [13].

A binary tree of atomic positions can be obtained with
this methodology. All the positions on the tree are computed
by exploiting the known distances from the three preceding
atoms. However, other distancesdij may also be known (even
though it is not required by Assumptions 1 and 2), and this
allows to check the feasibility of the computed positions. If
x′

i is one possible position forxi, then we can compare all
the known distances betweenxi and xj , with j < i, to the
corresponding distances that can be computed betweenx′

i and
eachxj . If known and computed distances match:

| ||x′
i − xj || − dij | < ε,

for a given toleranceε > 0, thenx′
i is feasible, otherwise it

is not. We refer to this strategy for checking the feasibility of
the atomic positions aspruning test.

When wrong distances are included in the instance, the
pruning test could give an incorrect answer. Supposing that
we are checking the feasibility of the computed positionx′

i

for the atomxi, if one of the distancesdji, for somej < i, is
wrong, thenx′

i can be declared infeasible even though it might

not be. This can force the pruning of a branch where there are
actually solutions. The following strategy has been proposed
in [16] for overcoming this problem. Once a certain threshold
∆ on the maximum allowed number of violated distances has
been set up, each branch is pruned only after that the actual
number of violated distances gets larger than∆. When the
value of∆ increases, the number offeasiblebranches of the
tree increases as well. In order to reduce the effects of this
phenomenon, the value of the threshold∆ can be updated
during the execution of BP, when solutions are found in which
less than∆ distances are violated.

Note that, if some of the distances related to the quadruplets
of consecutive atoms{xi−3, xi−2, xi−1, xi} are wrong, then
it might be impossible to compute the two atomic positions
for the atomxi, because the distances in this quadruplet may
be incompatible to each other. For example, let us suppose
that the distancedi−2,i betweenxi−2 and xi is wrong. As
a consequence, we may not be able to compute the cosine
of the torsion angle among these four atoms. This can be
considered as a signal which can reveal the presence of wrong
distances: there is at least one wrong distance in the considered
quadruplet. In order to find out which distance could be
wrong, we can check the validity of the triangular inequality
in correspondence with the triangles that can be defined in
the quadruplet. By hypothesis, we require the knowledge of
all the distances in the quadruplet, and therefore we have
enough information for checking the triangular inequalities.
If some of them is not satisfied, then at least one distance in
the triangle is wrong. For this reason, we will consider only
wrong distances which are not contained in the quadruplets of
consecutive atoms, because they can be more easily identified
and corrected. In particular, isolated distances are the most
difficult to be recognized as wrong.

For solving instances of the DMDGP, we consider the BP
algorithm [13], which is strongly based on the binary tree
structure of the combinatorial problem. Algorithm 1 provides
a sketch of this algorithm.i is the current atom whose position
is searched, whereasn is the the total number of atoms of the
considered molecule.d represents the set of known distances.
∆ is the threshold for the number of violated distances.
Algorithm 1 is invoked iteratively, and one of the solutionsto
the problem is found when BP(n,n,d,∆,sol) finds a feasible
position for the last atom of the molecular conformation.
The given output is the binary matrixsol representing a set
of complete paths on the binary tree. This is sufficient for
reconstructing the conformations for the molecule which are
solutions to the problem.

Note that, because of a symmetry property of the DMDGP,
it is sufficient to explore only half of the binary tree. Indeed,
the solutions contained in the other part of the tree can be
simply reconstructed by symmetry. The reader can refer to
[11] for more details.

III. T HE PARALLEL BP ALGORITHM

The basic idea of this parallel version of BP is to split a
generic instance of the DMDGP in sub-instances and to solve

Algorithm 1 The BP algorithm (sequential version)
0: BP(in: i, n, d, ∆; out: sol)
0: counter = 0 // counter of violated distances
0: nsol = 0 // number of solutions

for (k = 0, 1) do
compute thekth atomic position for theith atom:x(k)

i ;
check the feasibility of the atomic positionx(k)

i :
if (the atomic positionx(k)

i is NOT feasible)then
updatecounter;

end if
if (counter ≤ ∆) then

sol(nsol, i) = k;
if (i = n) then

sol(nsol, ∗) contains a complete solution;
nsol = nsol + 1;

else
BP(i + 1,n,d,∆,sol);

end if
end if

end for
return sol;

them independently on different processes. In order to obtain
the sub-instances forp processes, the first block ofn/p atoms
of the original instance are assigned to the first process, the
second block ofn/p atoms are assigned to the second one,
and so on. Ifn is not perfectly divisible byp, the remaining
atoms can be either assigned to a certain process, or distributed
among all the processes, depending onp. Only the distances
regarding the atoms assigned to a process are included in the
corresponding sub-instance. As a consequence, the distances
between atoms that are assigned to different processes are not
used, but they can be exploited later, when the local solutions
are combined.

Algorithm 2 is a sketch of the proposed parallel version
for the BP algorithm. The input and output parameters are
the same that are considered in the sequential version of the
algorithm (see Algorithm 1), plus the numberp of processes
involved in the computation. Once the instance in input is split
in p sub-instances,p parallel executions of the sequential ver-

Algorithm 2 The BP algorithm (parallel version)
0: parallel BP(in: i, n, d, ∆, p; out: sol)
0: split the instance inp sub-instances:
0: compute i(k), n(k), d(k) (k = 0, . . . , p − 1);

for each processk = 0, . . . , p − 1 (in parallel)do
call sequential BP(i(k),n(k),d(k),∆,sol(k));

end for
broadcast sol(k) to the other processes (cascade schema);
sol = [sol(0), sol(1), . . . , sol(p−1)];
build the binary tree associated tosol;
remove infeasible solutions fromsol;
return sol;

Fig. 1. The classic communication schema “cascade”, where only log
2

p
communication phases are needed to the processes for sharing an information.

sion of BP are performed. When all the executions are ended,
the found (local) solutions are given in output throughsol(k).
They are stored in terms of the binary choices (0/1, left/right
branch) that are made at each iteration of the algorithm.

After the execution of the local BP algorithms, the local
solutions need to be collected and distributed to all the
processes. To this aim, we consider the classiccascadeschema
for the necessary communications among the processes (see
Figure 1). This schema is very efficient, because it allows the
spreading of all local solutions among the processes in only
log2 p phases of communication. In order to use this schema,
the numberp of considered processes must be a power of 2.

During each communication phase, each process exchanges
information regarding the local solutions found by the sequen-
tial BPs with other processes. After each such phase, therefore,
we can start combining local solutions. For example, after
the first communication phase (see Figure 1), the solutions
found by processes 0 and 1 could be combined, as well as
the solutions found by processes 2 and 3. This would produce
two new sets of local solutions, that could be exchanged in the
next communication phase. However, the final coordinates for
the solutions can be produced only when all local solutions
are collected. The coordinates produced when combining a
partial number of solutions can be reused when the final
solutions are built only if translations or rotations are applied
to the set of points. Therefore, it is preferable that each single
process does not perform any computation during the different
communication phases. Only after, each process builds the
final solutions, and checks their feasibility. This part of the
algorithm is not executed in parallel.

In order to combine the local solutions, we consider a binary
treeTf formed only by branches which passed the pruning test
during the sequential executions of BP. Let us indicate with
the symbolT k the binary tree containing the local solutions
found by processk, with 0 ≤ k < p. Let Gk = (V k, Ek) be
the corresponding undirected graph, where verticesv ∈ V k

represent atomic positions, and edges connect vertices related
to consecutive atomic positions. In order to combine the local
solutions found by two processesk1 and k2 = k1 + 1, we
can construct a new binary tree as follows. LetV̂ be the
set of vertices of the corresponding graph, which contains
all the verticesv in V k1 and V k2 , where the verticesv of
V k2 are also duplicated as many times as the number of

Fig. 2. The final treeTf of solutions obtained by combining the subtrees
T k related to the local solutions found onk processes. Some of the branches
of Tf could be infeasible.

leaf vertices inV k1 , and new labels are assigned to them.
The set of edgeŝE is obtained similarly, and, for each leaf
vertex vl of V k1 , a new edge is added betweenvl and the
various copies of the first vertex ofV k2 . If this procedure
is performed recursively considering all the graphsGk, then
the final treeTf is constructed. Note that distances related to
atoms previously assigned to different processes can be used
for pruning branches ofTf and removing infeasible solutions.

Figure 2 gives a representation of this tree in the case in
which 4 processes are considered. For an easy representation
of Tf , we suppose that all the local calls to BP provide 2
solutions, even though, in general, the number of solutions
found by each process can be different.

By the symmetry property of the DMDGP [11], each local
BP can be employed for computing only the non-symmetric
solutions for its sub-instance. Then, the other symmetric solu-
tions can be found by exploiting this property. Indeed, ifsol
contains non-symmetric solutions only, then all the symmetric
solutions can be identified by computing the complement of
each binary variable used for their representation. Note that the
graphsGk, for each processk, must contain both symmetric
and non-symmetric solutions in order to build a complete final
treeTf .

IV. I MPLEMENTATION DETAILS

For the parallel implementation of the BP algorithm, we
use the MPI library [6], [7]. The communications based on
the cascade schema are implemented by employing pairs of
blocking MPI standard routines for sending and receiving
messages.

In the parallel BP, the message to be shared contains the
number of solutions found by each process, and variables con-
taining the local solutions. In order to compact the information

0 0 1 1 0 1 0 1

Fig. 3. A byte containing information regarding 8 differentlocal solutions.
If this byte is related to the atomxi, and x′

i
and x′′

i
are the two possible

positions forxi, then x′

i
was chosen in the2nd, the 3rd and the last two

solutions (from right to left); in all the other cases,x′′

i
was chosen.

to be shared and to speed up the communication phases, a
unique vector of integer numbers is used for representing all
found solutions. This is possible because each solution canbe
represented by a binary vector: the first bit of each integer
can be used for representing the first solution, the second bit
for the second solution, and so on. Since 4 bytes are usually
used for representing integer numbers on computer machines,
each vector of integers can only store 32 solutions. In order
to consider more solutions, more than one integer should be
considered in correspondence with the same atom. However,
in our experience, we never found instances related to real
molecules where the total number of solutions is so large.
Therefore, in our implementation, we consider a single vector
of n integer numbers, where all the solutions are stored bit per
bit. An example of interpretation of a single byte of an integer
number belonging to this vector is showed in Figure 3.

The number of solutions found by each process is also an
important information to be shared. However, in our imple-
mentation, this information is not contained in the messages
exchanged by the processes, because it can be easily computed
by each process once the vectors of integer numbers are all
collected. Indeed, from the values of the integer numbers, we
can check which bits have been activated (1) and which ones
kept instead their initial value (0). In the example in Figure 3,
we can see that the last two bits (from right to left) are not
activated. If they are not activated for all the integers of the
same local vector, then only 6 solutions have been found by
the sequential call to BP.

Note that this strategy for computing the number of solu-
tions may fail if the last solution which is stored is represented
by a sequence of 0s. This solution, in theory, may be found
by the local calls to BP. However, since our implementation
of BP performs an exploration of the binary trees which
considers left branches (associated to 0) before right branches
(associated to 1), if this solution is included in the solution
set, then it is the first one to be stored. As a consequence, the
only case in which our strategy can fail is never verified.

V. COMPUTATIONAL EXPERIMENTS

The computational experiments are carried out on the
nation-wide grid infrastructure Grid5000 [3]. It is a grid
formed by various clusters geographically distributed in 9
different sites in France. Just recently, a new site locatedin
Brazil, Porto Alegre, has been added to the grid. Grid5000
connects more than 5000 cores. For more information about
Grid5000, the interested reader can visit the official website
(https://www.grid5000.fr).

In our experiments, we consider a unique cluster of
Grid5000 which is located in Lille, France, in order to consider

n = 5000

∆/p 1 2 4 8 16 32 64
0 3.21 1.30 0.78 0.54 0.40 0.37 0.36
1 3.25 1.32 0.77 0.55 0.40 0.36 0.40
2 3.57 1.36 1.06 0.80 0.56 0.51 0.53
4 5.68 2.16 2.10 1.60 0.86 0.77 0.75

n = 7500

∆/p 1 2 4 8 16 32 64
0 4.73 3.15 1.83 1.25 0.99 0.88 0.93
1 4.76 3.14 1.84 1.30 0.96 0.89 0.93
2 6.15 5.30 4.49 2.48 1.20 1.04 0.96
4 9.53 8.85 5.58 2.74 2.21 1.67 1.55

n = 10000

∆/p 1 2 4 8 16 32 64
0 13.38 5.49 3.57 2.49 1.99 1.72 1.57
1 13.47 5.51 3.29 2.23 1.74 1.55 1.53
2 19.16 8.65 4.29 3.09 3.22 2.91 2.24
4 127.51 22.74 13.99 10.27 11.79 11.55 14.72

TABLE I
THE CPUTIME , IN SECONDS, NEEDED FOR CARRYING OUT OUR

COMPUTATIONAL EXPERIMENTS ON A SET OF ARTIFICIAL INSTANCES.

nodes of the grid with the same features. We use a SGI Altix
Xe 310 cluster with 46 nodes, each of them composed by 2
CPUs (Intel Xeon E5440 QC 2.83 GHz, 4 MB, 1333 MHz).
Summing up, this cluster has 92 CPUs, and we use 64 of them
in our experiments (because of the employed communication
schema, a power of 2 of processes must be considered). The
reservation system for the resources of the grid makes sure that
the used CPUs are completely devoted to our experiments.

We implemented the parallel BP in C programming lan-
guage. We used the MPI library [6], [7], version MPICH2
1.0.5p4, and the GNU C compiler version 4.2.4. The efficient
routines provided by MPI for making the involved processes
communicate and the flexibility of C programming language
in the management of bitwise operations make C and MPI the
best possible choices for the implementation of our parallel
BP.

The instances we use in the computational experiences are
artificially generated, so that they resemble conformations
of protein molecules [10]. Moreover, in order to simulate
instances containing a small part of wrong distances, a pre-
determined number of distances are modified and arbitrarily
changed to a wrong value. As previously remarked, errors in
the distancesdi−3,i, di−2,i anddi−1,i can be easily identified
when using this discrete approach, and therefore we never
modify these distances.

Table I shows some computational experiments with three
different instances, having sizen = 5000, 7500 and 10000.
The total number of known distances is 84195, 135475,
183444, respectively. For each instance, we introduce 1, 2 or 4
wrong distances. We also consider the instance as is, without
introducing any errors. The value of the threshold∆ is set
up accordingly to the number of introduced wrong distances
(in general, however, the precise number of wrong distances
may not be known a priori). For each instance and for each
∆, one sequential execution of BP is provided, as well as
six parallel executions in which a power of 2 processesp

(with 2 ≤ p ≤ 64) is used. For each experiment, the total
computational time, expressed in seconds, is given.

The experiments show that the parallel version of BP is
able to find the solutions to DMDGPs more efficiently. For
all the experiments with the same instance and the same
∆, we always obtained the same set of final solutions, and,
when the numberp of processes involved in the computation
increases, this set of solutions is obtained in a shorter time.
This reduction of time is more evident when 2 processes are
used instead of 1, or 4 processes are used instead of 2. When
p increases, the gain in computational time is less evident
and, in a few cases, executions with more processes took a
time which is slightly larger than the one needed for some
executions with less processes. This is due to the fact that,as
p increases, the sub-instances considered on each process get
smaller, whereas the number of branches of the final binary
tree Tf increases. As a consequence, the parallel part of the
algorithm (the calls to the sequential BPs) tends to be less
expensive than the sequential part, in which all the processes
work on the same task: buildingTf and giving in output the
final set of solutions.

VI. CONCLUSIONS

We presented a parallel version of the BP algorithm for the
DMDGP. Instances of the problem are divided in sub-instances
that are solved independently by the various processes in-
volved in the computation. Then, after the communication of
the local solutions, they are combined and the final set of
solutions of the original instance is found. We performed some
computational experiments on the nation-wide grid infrastruc-
ture Grid5000, and they showed the scalability of the proposed
algorithm. Large instances containing wrong distances canbe
solved in parallel in a few seconds.

ACKNOWLEDGMENTS

The authors wish to thank Jean-Claude Charr for his help
in organizing the computational experiments on Grid5000.
Also, we would like to thank the Brazilian research agencies
FAPESP and CNPq, the French research agency CNRS and
École Polytechnique, for financial support.

REFERENCES

[1] B. Berger, J. Kleinberg and T. Leighton,Reconstructing a Three-
Dimensional Model with Arbitrary Errors, Journal of the ACM46, 212–
235, 1999.

[2] P. Biswas, K.-C. Toh, and Y. Ye,A Distributed SDP Approach for
Large-Scale Noisy Anchor-Free Graph Realization with Applications to
Molecular Conformation, SIAM Journal on Scientific Computing30,
1251–1277, 2008.

[3] R. Bolze, F. Cappello, E. aron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lantéri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E-G. Talbi and I. Touche,Grid’5000:
a Large Scale and Highly Reconfigurable Experimental Grid Testbed,
International Journal of High Performance Computing Applications20
(4), 481–494, 2006.

[4] G.M. Crippen and T.F. Havel,Distance Geometry and Molecular Con-
formation, John Wiley & Sons, New York, 1988.

[5] W. Gronwald, H.R. Kalbitzer,Automated Structure Determination of
Proteins by NMR Spectroscopy, Progress in Nuclear Magnetic Reso-
nance Spectroscopy44 (1–2), 33–96, 2004.

[6] W.D. Gropp, Ewing Lusk,User’s Guide formpich, a Portable Im-
plementation of MPI, Mathematics and Computer Science Division,
Argonne National Laboratory, 1996.

[7] W. Gropp, E. Lusk, N. Doss, A. Skjellum,A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard, Parallel
Computing22 (6), 789–828, 1996.

[8] A. Grosso, M. Locatelli, F. Schoen,Solving Molecular Distance Ge-
ometry Problems by Global Optimization Algorithms, Computational
Optimization and Applications43, 23–27, 2009.

[9] T.F. Havel,Distance Geometry, In: D.M. Grant and R.K. Harris (Eds.),
Encyclopedia of Nuclear Magnetic Resonance, Wiley, New York, 1701-
1710, 1995.

[10] C. Lavor,On Generating Instances for the Molecular Distance Geometry
Problem, In: L. Liberti and N. Maculan (Eds.), Global Optimization:
from Theory to Implementation, Springer, New York, 405–414, 2006.

[11] C. Lavor, L. Liberti, and N. Maculan,Discretizable Molecular Distance
Geometry Problem, Tech. Rep. q-bio.BM/0608012, arXiv, 2006.

[12] C. Lavor, L. Liberti, and N. Maculan,Molecular Distance Geometry
Problem, In: Encyclopedia of Optimization, C. Floudas and P. Pardalos
(Eds.),2nd edition, Springer, New York, 2305–2311, 2009.

[13] L. Liberti, C. Lavor, and N. Maculan,A Branch-and-Prune Algorithm for
the Molecular Distance Geometry Problem, International Transactions
in Operational Research15 (1), 1–17, 2008.

[14] L. Liberti, C. Lavor, A. Mucherino, N. Maculan,Molecular Distance
Geometry Methods: from Continuous to Discrete, to appear in Interna-
tional Transactions in Operational Research, 2010.

[15] J.J. Moré, Z. Wu,Global Continuation for Distance Geometry Problems,
SIAM Journal on Optimization7, 814–836, 1997.

[16] A. Mucherino, L. Liberti, C. Lavor, and N. Maculan,Comparisons
between an Exact and a MetaHeuristic Algorithm for the Molecular Dis-
tance Geometry Problem, ACM Conference Proceedings, Genetic and
Evolutionary Computation Conference (GECCO09), Montréal, Canada,
333–340, 2009.

[17] J.B. Saxe,Embeddability of Weighted Graphs ink-space is Strongly
NP-hard, Proceedings of17th Allerton Conference in Communications,
Control, and Computing, Monticello, IL, 480–489, 1979.

[18] T. Schlick, Molecular Modelling and Simulation: an Interdisciplinary
Guide, Springer, New York, 2002.

