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Abstract—The Discretizable Molecular Distance Geometry Prob-
lem (DMDGP) consists in a subclass of distance geometry instances
(related to molecules) that can be solved by combinatorial optimiza-
tion. A modified version of the Branch and Prune (BP) algorithm,
previously proposed for solving these instances, is presented, where
it is supposed that exact distances are not known, but rather intervals
where the actual distances are contained. This assumption is realis-
tic, because instances of this problem can be defined by applying
experimental techniques, such as the Nuclear Magnetic Resonance
(NMR), that are subject to errors. Computational experiences show
how inaccurate data can affect the quality and the number of solutions
which are found by the modified version of the BP algorithm.
Depending on the errors introduced in the data, less accurate solutions
or a larger number of solutions is found. In the latter case, clusters
containing the most similar conformations can be identified, and the
cardinality of the solution set can be reduced.

Keywords—distance geometry, protein molecules, branch and
prune, inexact distances.

I. INTRODUCTION

The MOLECULAR DISTANCE GEOMETRY PROBLEM

(MDGP) is the problem of identifying the atomic positions of
a molecular conformation by exploiting some known distance
between pairs of atoms. This problem can also be seen as the
problem of finding an immersion in �3 of a given undirected
and nonnegatively weighted graph G = (V, E, d). In the
graph, the set V of vertices represents the set of atoms of the
conformation, the set E of edges indicates the pairs of atoms
whose distance is known, and the weights d correspond to the
known distances. The MDGP is NP-complete [13], although
the problem is solvable in linear time when all the inter-atomic
distances are known [3].

There are several methods proposed in the literature for the
MDGP (the reader is referred to [6] for a survey). The most
common approach is the one in which the MDGP is formulated
as a continuous nonconvex optimization problem:

min f(X),

where f(X) is an error function which evaluates how much a
given conformation X = {x1, x2, . . . , xn} satisfies the known
distances d in G. If i, j ∈ V such that (i, j) ∈ E, then the
distance ||xi−xj || between the two atoms xi and xj of X can
be computed, and it can be compared to the known distance
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dij . One of the possible choices for f(X) is the so-called
Largest Distance Error (LDE):

f(X) =
1
|E|

∑

{i,j}

||xi − xj || − dij

dij
. (1)

Naturally, if the set of known distances is feasible, X solves
the problem if and only if f(X) = 0.

The DISCRETIZABLE MOLECULAR DISTANCE GEOME-
TRY PROBLEM (DMDGP) [9], [10] consists of a certain subset
of MDGP instances for which a discrete formulation can be
supplied when two particular assumptions are satisfied. Our
attention is focused on protein molecules, because their partic-
ular structure allows us to consider the discrete reformulation
in most of the cases. A BRANCH AND PRUNE (BP) algorithm
has been proposed in [9] for the solution of this discrete
problem.

In this paper, the management of possible experimental
errors that can affect the distances corresponding to a given
instance is investigated. Indeed, instances of the DMDGP can
be generated from data obtained from experimental techniques,
such as the Nuclear Magnetic Resonance (NMR) [4], and it
is well-known that these data can be affected by experimental
errors. In particular, NMR experiments cannot provide accu-
rate distances between pairs of atoms, but rather an estimate of
such distances. Therefore, instead of single and accurate values
for the distances, intervals in which the actual distances are
contained are usually provided.

A modified version of the BP algorithm is introduced in
this work, which is able to handle intervals instead of exact
distances. The computational experiments show that this new
version of the algorithm is able to provide, in some cases,
solutions having the same quality as exact distances were
considered. However, the total number of found solutions
increases, and clusters of similar solutions can be identified.

The paper is organized as follows. In Section II, the ex-
perimental errors that can affect real data are discussed, and
a method for generating instances of the DMDGP affected
by errors is shown. In Section III, the new version of the BP
algorithm is presented, where the differences between the orig-
inal and the modified version are pointed out. Computational
results are presented in Section IV and conclusions are drawn
in Section V.

II. INFLUENCE OF EXPERIMENTAL ERRORS

Experiments of Nuclear Magnetic Resonance (NMR) pro-
vide information that can be used for estimating some of the
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distance between pairs of atoms of a molecule. The set of all
such distances defines an instance of the MDGP. Moreover, if
some assumptions are satisfied (see Section III), the generated
instance is also an instance for the DMDGP. The needed
assumptions are usually satisfied when dealing with instances
related to proteins, and, in particular, protein backbones [7],
[8].

In this work, real data from NMR are not considered,
but our instances are rather generated from known protein
conformations in order to validate the results by comparing the
obtained conformations to the original ones. Conformations of
proteins can be downloaded from a public database, the Protein
Data Bank (PDB) [1], [12], where they are stored in pdb

format. This is a text format where, among other information,
there are the coordinates in the space of the atoms forming
the molecule.

Proteins are formed by smaller molecules called amino
acids that are bound to each other by defining a sort of chain. A
sequence of bound atoms can therefore be identified along the
protein conformation that goes amino acid per amino acid: this
sequence of atoms is usually referred to as protein backbone
and it is much studied. The focus of this work is on protein
backbones only.

The procedure which is used for generating instances of the
DMDGP is the following. Once a certain protein conformation
is downloaded from the PDB, its backbone is extracted. In
practice, for each amino acid of the molecule, only the atoms
N, Cα and C are considered. Then, all the possible distances
between the pairs of considered atoms are computed. An
instance is defined by all the computed distances which are
smaller than 6Å, in order to simulate data from NMR. In
fact, NMR experiments are able to provide distances that are
smaller than the threshold of 6Å.

This procedure is able to generate instances of the DMDGP
in which the distances have a precision which is close to
the maximum precision available on a computer machine.
However, NMR experiments can provide distances that are
not so accurate, and usually only an interval in which a given
distance is contained is available. Moreover, there is a low
probability that some distances are actually not contained into
the provided interval. This kind of experimental error has been
already investigated in [11], and it is supposed in the following
that all the intervals are correct. Future works can be aimed at
the combination of the modified version of the BP algorithm
proposed in this paper and the strategy implemented in [11].

Since a realistic instance of the DMDGP is expected to
contain a list of lower and upper bounds on a subset of
distances between atoms, the procedure described above is
used for generating exact distances between atoms, and then
the method discussed in [2] is applied in order to introduce
errors on such distances. Once the exact distances dij (< 6Å)
have been computed from a given protein conformation, the
lower and the upper bound of the distances dij are obtained,
respectively, by

{
lij = dij max(0, 1 − |εij |)
uij = dij(1 + |εij |),

(2)

where εij and εij are random numbers in a normal distribution

with center in 0 and variance σ2. The chosen variance provides
the corresponding noise introduced in the data. The version of
the BP algorithm that is presented in the next section is able
to handle instances generated in this way.

III. A MODIFIED VERSION OF THE BRANCH AND PRUNE

ALGORITHM

Let us consider an instance of the MDGP and let G =
(V, E, d) be the associated weighted undirected graph. If the
following two assumptions are satisfied, then the considered
instance is also an instance for the DMDGP:
Assumption 1: E contains all cliques on quadruplets of con-
secutive vertices, i.e. ∀i ∈ {4, . . . , n} and ∀j, k ∈ {i −
3, . . . , i} :

(j, k) ∈ E;

Assumption 2: the following strict triangular inequality must
hold ∀i = 2, . . . , n − 1 :

di−1,i+1 < di−1,i + di,i+1.

In practice, Assumption 1 ensures that the distances between
each pair of atoms in each quadruplet of consecutive atoms
are all known. If Assumption 2 holds, moreover, triplets of
consecutive atoms cannot be perfectly aligned. When both as-
sumptions are satisfied, there exist only two possible positions
where the generic atom xi can be placed, if the three preceding
atoms are already placed into a fixed location. This leads to the
definition of a binary tree of possible molecular conformations,
where the solutions of the DMDGP can be searched [9].

Given an instance of the DMDGP, the corresponding set E
of edges can be divided into two subsets:

• H , which refers to all the distances between atoms i and
j such that j ≤ i + 3,

• F = E − H .

It is very important to note that the binary tree of solutions of
the DMDGP can be completely defined by using the distances
in the subset H (all these distances are all known because
of the first assumption). Instead, the distances in F can be
exploited for looking for solutions to the problem on the binary
tree.

The basic idea behind the BP algorithm is as follows. At
each step, two possible atomic positions are computed for the
current atom i. This is equivalent to adding two new nodes on
the binary tree of possible solutions. Once the two positions
are computed, their feasibility is evaluated by employing
pruning tests. When infeasible positions are discovered, the
corresponding branch on the binary tree is pruned, because
no solutions can be found on that branch. Algorithm 1 is a
sketch of the BP algorithm. Other details on the algorithm can
be found in [9], [10].

As already mentioned, it is very important to make a
distinction between the distances in the subset H and the
distances in the subset F . In the case in which the provided
distances are exact, the two atomic positions for the atom i can
be computed by intersecting the three spheres having centers
in xi−3, xi−2 and xi−1 and radius, respectively, di−3,i, di−2,i

and di−1,i. The problem of finding these intersections can be
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Algorithm 1 The BP algorithm.
0: BP(i, n, d)

for (k = 1, 2) do
compute the kth atomic position for the ith atom: x

(k)
i ;

check the feasibility of the atomic position x
(k)
i :

if (the atomic position x
(k)
i is feasible) then

if (i = n) then
one solution is found;

else
BP(i + 1,n,d);

end if
else

the current branch is pruned;
end if

end for

efficiently solved as described in [9]. If the assumptions for
the DMDGP are satisfied, such intersections always define two
atomic positions only.

If, instead of exact distances, intervals are provided, then
this strategy cannot be applied. Therefore, an estimation of
the actual distances from the available intervals are needed.
One possible way to do this is to consider the average
distances defined by the intervals. This obviously brings to
approximations, because it is known that the correct distances
are in the intervals, but they may not be in the middle of such
intervals. However, the average distances are, in general, the
best possible choices.

During the execution of the algorithm, couples of new
positions are computed. In order to check the feasibility of
such positions, pruning tests are used, which are based on the
distances in the subset F . Different pruning tests can be used
[7], and the most natural one is the following. Supposing that
exact distances are provided, for each xi and j ∈ V such that
(j, i) ∈ F , if computed and known distances match:

| ||xi − xj || − dij | < ε,

for a given tolerance ε > 0, then the atomic position xi is
feasible, otherwise it is not. Branches of the tree containing
infeasible positions can be pruned, because it is sure they do
not contain solutions to the problem.

If, instead of exact distances dij , intervals [lij , uij] are
provided, then the pruning test, as described above, cannot
be used. The immediate variant is the following. For each xi

and j ∈ V such that (j, i) ∈ F , the atomic position xi is
infeasible if the following two inequalities do not hold:

lij < ||xi − xj || < uij .

Note that, in this case, there is no need to use any tolerance ε,
but the length of the interval [lij , uij ] plays the rule of ε. As
a consequence, the actual tolerance used in this pruning test
depends on the noise in the data.

IV. COMPUTATIONAL EXPERIENCES

The experiments presented in this section have been carried
out on one core of an Intel Core 2 CPU 6400 @ 2.13 GHz with

instance n |E| σ #Sol LDE

2erl 120 1136 0.02 2 1.33e-14
0.05 2 1.33e-14
0.08 2 1.33e-14
0.10 2 1.33e-14
0.15 4 1.33e-14
0.20 4 1.33e-14
0.30 32 1.33e-14

TABLE I
EXPERIMENTS ON THE PROTEIN 2erl, WHERE DIFFERENT NOISES ARE
APPLIED TO THE DISTANCES RELATED TO F (IN ALL CASES, THE CPU

TIME WAS 0.00).

4GB RAM, running Linux. Computational experiments have
been performed on a set of instances generated from proteins
having known conformation, as described in Section II.

Before presenting the computational results, only the protein
2erl is considered in Table I. In the table, n is the number
of atoms of the backbone of the considered protein, |E| is the
number of given distances, σ is the noise defined in Section
II, and #Sol is the number of found solutions. LDE represents
the quality of the best found solution (see equation (1)): the
distances dij used in the formula are the exact ones, the ones
used in (2) for computing the intervals [lij , uij ]. The CPU time
is given in seconds, if not otherwise specified.

In these experiments, the noise was applied only to the
distances in F , i.e. to the distances used in the pruning test.
Therefore, the distances used for generating the binary tree
of solutions are accurate. Table I shows that, for any noise σ
applied to the distances, the BP algorithm is always able to find
the same best solution. What changes is the total number of
found solutions. The higher is the noise σ, the more solutions
are found. This phenomenon is due to the fact that the lengths
of the intervals [lij , uij] used in the pruning tests increase as
the noise on the data increases, and larger intervals allow to
detect less infeasible atomic positions.

However, some deeper analysis on the solution set revealed
that, even though the total number of solutions increases with
noise, subgroups of solutions which are very similar to each
other can be identified. In other words, the solution set can be
partitioned in clusters, with each cluster containing solutions
which are very similar, but different from the solutions in other
clusters. For example, in the experiment shown in Table I with
σ = 0.30, two separate clusters can be found, each of them
containing 16 solutions.

Figure 1 shows two representatives of these clusters. The
Root Mean Square Deviation (RMSD) [14] between all the
possible pairs of solutions belonging to the same cluster, and
also belonging to different clusters, have been computed. As
Figure 1 shows, the mean RMSD value among the solutions
of the same cluster is quite small, and this proves that such
solutions are very similar to each other. Moreover, they are
very different from the solutions in the other cluster, as the
mean RMSD value among solutions belonging to different
clusters shows.

Table II shows experiments on a subset of instances related
to some of the proteins used by Biswas, Toh and Ye [2],
Wu and Wu [14], and Hendrickson [5] in their computational
experiments. All the experiments were limited to 3 hours of
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mean RMSD (same cluster) = 0.012Å mean RMSD (same cluster) = 0.012Å

mean RMSD (different clusters) = 6.311Å mean RMSD (different clusters) = 6.311Å

Fig. 1. Two representatives of the two clusters of solutions related to the
experiment in Table I with σ = 0.30.

CPU time. In only three cases, corresponding to large proteins
and to higher noise, the algorithm was still running after 3
hours. In one case (1epw, σ = 0.20), the algorithm found
16 solutions, but failed to terminate within the time limit. In
other two cases (1acz, 1rgs, σ = 0.20), when the algorithm
was forced to stop after 3 hours, no solutions were found yet,
probably because the pruning test was not able to prune, by
that time, a sufficient number of branches in order to reach a
leaf node of the search tree. In general, the experiments show
that a larger noise σ does not affect the quality of the best
found solution, evaluated through the LDE function. However,
as the number of solutions increases, and the computational
time for carrying out the experiments is larger, clusters of
solutions can be found by comparisons by RMSDs. As a
consequence, the cardinality of the solution set can be reduced
to the number of clusters that can be identified: each solution
can be defined as the average among all the conformations
belonging to the same cluster.

In Table III, some experiments show how errors on the
distances related to the subset H can affect the results of the
BP algorithm. In these experiments, intervals for the distances
in H with a certain noise σ are not generated, but the accuracy
of these distances is directly decreased by modifying the
number of decimal digits used for their representation. Only
the accuracy of the distances di−3,i is modified, because the
distances di−2,i and di−1,i are known in proteins (bond lengths
and bond angles are known a priori). In Table III, only one
protein is considered, but similar results can be obtained with
the other proteins of the considered set. The experiments show
that the quality of the best solution found by the algorithm
decreases with the accuracy of the distances di−3,i, whereas
the number of found solutions increases as the noise on the
distances in F increases. In this case, the tree of possible
solutions built during the execution of the algorithm changes
with the accuracy of the distances di−3,i. Therefore, the less
is the accuracy of such distances, the less is the quality of the
best found solution. The errors introduced on the distances
in F do not have instead this effect. Such errors, as the
previous experiments show, are able to interfere only on the
total number of solutions found by the algorithm. Note that,
when the accuracy on the distances di−3,i goes below the 5th

decimal digit, the positions on the tree and the bounds [lij , uij ]

instance n |E| σ #Sol LDE time

1brv 57 476 0.05 2 1.39e-14 0.00e+00
0.10 2 1.39e-14 0.00e+00
0.20 2 1.39e-14 0.00e+00

1aqr 120 929 0.05 8 3.10e-13 1.00e-02
0.10 128 3.10e-13 3.00e-02
0.20 1024 3.10e-13 2.10e-01

1crn 138 1250 0.05 2 2.24e-13 0.00e+00
0.10 2 2.24e-13 0.00e+00
0.20 2 2.24e-13 0.00e+00

1ahl 147 1205 0.05 16 9.86e-13 0.00e+00
0.10 16 9.86e-13 3.00e-02
0.20 128 9.86e-13 6.10e-01

1ptq 150 1263 0.05 2 2.30e-13 0.00e+00
0.10 4 2.30e-13 0.00e+00
0.20 12 2.30e-13 3.00e-02

1brz 159 1394 0.05 4 4.48e-13 1.00e-02
0.10 32 4.48e-13 2.86e+00
0.20 512 4.48e-13 9.35e+03

1hoe 222 1995 0.05 2 3.18e-13 0.00e+00
0.10 2 3.18e-13 0.00e+00
0.20 4 3.18e-13 0.00e+00

1lfb 232 2137 0.05 2 5.31e-14 0.00e+00
0.10 2 5.31e-14 0.00e+00
0.20 16 5.31e-14 1.00e-02

1pht 249 2283 0.05 4 2.73e-12 0.00e+00
0.10 8 2.73e-12 1.00e-02
0.20 16 2.73e-12 1.46e+00

1jk2 270 2574 0.05 2 2.09e-13 0.00e+00
0.10 6 2.09e-13 1.00e-02
0.20 384 2.09e-13 3.00e-01

1f39a 303 2660 0.05 2 1.88e-08 1.00e-02
0.10 8 1.88e-08 2.00e-02
0.20 192 1.88e-08 9.79e+01

1acz 324 3060 0.05 8 2.75e-12 9.00e-02
0.10 32 2.75e-12 8.85e+01
0.20 0 - 3h

1poa 354 3193 0.05 2 1.36e-13 0.00e+00
0.10 2 1.36e-13 0.00e+00
0.20 2 1.36e-13 2.00e-02

1fs3 372 3443 0.05 4 8.08e-13 0.00e+00
0.10 4 8.08e-13 1.00e-02
0.20 16 8.08e-13 7.60e-01

1mbn 459 4599 0.05 2 1.36e-09 1.00e-02
0.10 4 1.36e-09 0.00e+00
0.20 32 1.36e-09 2.00e-02

1rgs 792 7626 0.05 2 4.22e-13 2.00e-02
0.10 8 4.22e-13 9.50e+01
0.20 0 - 3h

1m40 1224 20382 0.05 2 1.00e-12 2.00e-02
0.10 2 1.00e-12 2.00e-02
0.20 2 1.00e-12 3.00e-02

1bpm 1443 14292 0.05 2 2.85e-13 2.00e-02
0.10 2 2.85e-13 4.00e-02
0.20 4 2.85e-13 5.03e+00

1n4w 1610 16940 0.05 2 1.19e-12 3.00e-02
0.10 4 1.19e-12 4.00e-02
0.20 8 1.19e-12 4.90e-01

1mqq 2032 19564 0.05 2 9.89e-08 4.00e-02
0.10 2 9.89e-08 9.00e-02
0.20 4 9.89e-08 1.19e+01

1rwh 2265 21666 0.05 2 2.08e-13 6.00e-02
0.10 2 2.08e-13 8.00e-02
0.20 8 2.08e-13 2.53e+00

3b34 2790 29188 0.05 2 1.17e-11 1.00e-01
0.10 2 1.17e-11 1.20e-01
0.20 16 1.17e-11 4.24e+01

2e7z 2907 42098 0.05 2 4.26e-12 1.00e-01
0.10 4 4.26e-12 2.30e-01
0.20 8 4.26e-12 6.57e+00

1epw 3861 35028 0.05 16 3.44e-12 1.54e+00
0.10 32 3.44e-12 3.40e+01
0.20 16 3.44e-12 3h

TABLE II
EXPERIMENTS WITH DIFFERENT NOISES APPLIED TO ALL THE DISTANCES

RELATED TO THE SUBSET F .

on the distances in F become incompatible, and no solutions
are found.
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σ 0.05 0.08 0.10 0.15 0.20

# digits (di−3,i) LDE (#Sol) LDE (#Sol) LDE (#Sol) LDE (#Sol) LDE (#Sol)
15 1.19e-12 (2) 1.19e-12 (2) 1.19e-12 (4) 1.19e-12 (4) 1.19e-12 (8)
14 1.19e-12 (2) 1.19e-12 (2) 1.19e-12 (4) 1.19e-12 (4) 1.19e-12 (8)
13 1.21e-12 (2) 1.21e-12 (2) 1.21e-12 (4) 1.21e-12 (4) 1.21e-12 (8)
12 1.49e-12 (2) 1.49e-12 (2) 1.49e-12 (4) 1.49e-12 (4) 1.49e-12 (8)
11 4.99e-12 (2) 4.99e-12 (2) 4.99e-12 (4) 4.99e-12 (4) 4.99e-12 (8)
10 4.33e-11 (2) 4.33e-11 (2) 4.33e-11 (4) 4.33e-11 (4) 4.33e-11 (8)
9 4.50e-10 (2) 4.50e-10 (2) 4.50e-10 (4) 4.50e-10 (4) 4.50e-10 (8)
8 4.29e-09 (2) 4.29e-09 (2) 4.29e-09 (4) 4.29e-09 (4) 4.29e-09 (8)
7 4.33e-08 (2) 4.33e-08 (2) 4.33e-08 (4) 4.33e-08 (4) 4.33e-08 (8)
6 4.02e-07 (2) 4.02e-07 (2) 4.02e-07 (4) 4.02e-07 (4) 4.02e-07 (8)
5 4.20e-06 (2) 4.20e-06 (2) 4.20e-06 (4) 4.20e-06 (4) 4.20e-06 (8)

TABLE III
EXPERIMENTS ON ONE PROTEIN (1n4w), IN WHICH DIFFERENT NOISES ARE APPLIED TO THE DISTANCES IN F AND A DIFFERENT NUMBER OF DECIMAL

DIGITS ARE USED FOR REPRESENTING THE DISTANCES di−3,i .

V. CONCLUSIONS

The DMDGP aims at finding the three-dimensional con-
formations of molecules by combinatorial optimization. It
is supposed that only some of the distances between pairs
of atoms are known. Such distances can be obtained by
experimental techniques such as NMR, where the distances
between atoms closer than around 6Å can be estimated. The
accuracy of these data is usually low, and therefore intervals
where the actual distances are contained are usually provided,
instead of exact distances.

A modified version of the BP algorithm is presented in this
paper, that was previously proposed for solving the combi-
natorial optimization problem related to DMDGP instances.
The modified version of the algorithm is able to overcome
some of the problems arising when the accuracy of the known
distances is not high, as in the case in which data from NMR
experiments are used.

Starting from the known conformations of some proteins,
a set of instances, in which different degrees of noise were
introduced, was generated. The aim of the presented compu-
tational experiments was to study how these errors affect the
results found by the BP algorithm. The experiments showed
that less accurate distances can lead to the identification of
more solutions. However, if particular distances are accurate
enough (the distances in H), then the best solution found is the
same as exact distances were considered. Moreover, another
important result is that the solution set can be partitioned
in clusters, and one unique solution can be generated as the
representer of each cluster.
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CNRS and the École Polytechnique, for financial support. The
authors also wish to thank Leo Liberti for his suggestions.

REFERENCES

[1] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weis-
sig, I.N. Shindyalov, P.E. Bourne, “The Protein Data Bank”, Nucleic
Acids Research, vol. 28, pp. 235–242, 2000.

[2] P. Biswas, K.-C. Toh, Y. Ye, “A Distributed SDP Approach for Large-
Scale Noisy Anchor-free Graph Realization with Applications to Molec-
ular Conformation”, SIAM Journal on Scientific Computing, vol. 30,
pp. 1251–1277, 2008.

[3] Q. Dong, Z. Wu, “A Linear-time Algorithm for Solving the Molecular
Distance Geometry Problem with Exact Inter-atomic Distances”, Journal
of Global Optimization, vol. 22, pp. 365–375, 2002.

[4] T.F. Havel, “Distance Geometry”. In: D.M. Grant, R.K. Harris (Eds.),
Encyclopedia of Nuclear Magnetic Resonance, Wiley, New York,
pp. 1701–1710, 1995.

[5] B.A. Hendrickson, “The Molecule Problem: Exploiting Structure in
Global Optimization”, SIAM Journal on Optimization, vol. 5, pp. 835–
857, 1995.

[6] C. Lavor, L. Liberti, N. Maculan,“Molecular Distance Geometry Prob-
lem”. In: C. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimiza-
tion, 2nd Edition, Springer, New York, pp. 2305–2311, 2009.

[7] C. Lavor, L. Liberti, A. Mucherino, and N. Maculan, “On a Discretizable
Subclass of Instances of the Molecular Distance Geometry Problem”,
ACM Conference Proceedings, 24th Annual ACM Symposium on
Applied Computing (SAC09), Hawaii USA, pp. 804–805, 2009.

[8] C. Lavor, A. Mucherino, L. Liberti, and N. Maculan, “Computing
Artificial Backbones of Hydrogen Atoms in order to Discover Pro-
tein Backbones”, IEEE Conference Proceedings, International Confer-
ence IMCSIT09, Workshop on Combinatorial Optimization (WCO09),
Poland, October 2009.

[9] L. Liberti, C. Lavor, N. Maculan, “A Branch-and-Prune Algorithm for
the Molecular Distance Geometry Problem”, International Transactions
in Operational Research, vol. 15, pp. 1–17, 2008.

[10] L. Liberti, C. Lavor, N. Maculan, “Discretizable Molecular Distance
Geometry Problem”, Tech. Rep. q-bio.BM/0608012, arXiv, 2006.

[11] A. Mucherino, L. Liberti, C. Lavor, and N. Maculan, “Comparisons
between an Exact and a Meta-heuristic Algorithm for the Molecular
Distance Geometry Problem”, ACM Conference Proceedings. Confer-
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