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Summary. The prediction of protein native conformations is still a big challenge
in science, although a strong research activity has been carried out on this topic in
the last decades. In this chapter we focus on ab-initio computational methods for
protein fold predictions that do not rely heavily on comparisons with known pro-
tein structures and hence appear to be the most promising methods for determining
conformations not yet been observed experimentally. To identify main trends in the
research concerning protein fold predictions, we briefly review several ab-initio meth-
ods, including a recent topological approach that models the protein conformation
as a tube having maximum thickness without any self-contacts. This representation
leads to a constrained global optimization problem. We introduce a modification in
the tube model to increase the compactness of the computed conformations, and
present results of computational experiments devoted to simulating α-helices and
all-α proteins. A Metropolis Monte Carlo Simulated Annealing algorithm is used to
search the protein conformational space.
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1 Introduction

Proteins are heteropolymers that control and regulate many vital functions
[66, 67, 68], hence they are considered the building blocks of living organisms.
A protein is made of a sequence of amino acid residues connected by peptide
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bonds, called primary structure, which folds into a unique three-dimensional
conformation, called tertiary structure or native state. The biological function
of a protein is largely determined by its native state; the knowledge of the
native state is therefore critical in understanding the role of the protein in the
cell and the related molecular mechanisms. Levinthal’s paradox [48] and An-
finsen’s experiment [5] suggest that the Nature applies an “algorithm” to drive
a protein from its primary structure to its own tertiary structure, and that
the information needed to perform this algorithm is contained in the primary
structure. Understanding the protein folding problem means understanding
and reproducing this algorithm.

Many scientists have been working on the protein folding problem for
nearly half a century. A growing interest in its solution has been observed
during the years, because of its impact in several research fields, such as genetic
disease treatment, drug design, and the emerging structural and functional
genomics. However, despite the research has been very active, we are still far
from a clear and full explanation of the protein folding mechanisms and this
problem is still considered a big challenge in science.

Different computational approaches to the protein fold prediction have
been developed. We focus our attention on the so-called ab-initio methods
that do not rely heavily on comparisons with known protein structures and
appear to be the most promising for determining three-dimensional conforma-
tions that have not yet observed experimentally. These methods are usually
based on suitable representations of the polypeptide chain and on suitable en-
ergy functions reproducing physicochemical interactions among protein atoms.
According to Anfinsen’s hypotesis, the native state corresponds to the min-
imum energy of the system and its determination requires the solution of a
(computationally demanding) global constrained optimization problem.

Recent studies have emphasized the role of the topology of the native state
in the protein folding process [11, 42, 69, 80]. In this context, an ab-initio
method has been developed that takes into account mainly topological rather
than physicochemical features of the protein [7, 8, 9, 10, 54]. This method
is based on a very simplified model that represents the polymer chain as
a tube of nonzero thickness, without self-contacts. As in other approaches,
this formulation leads to a constrained global optimization problem. In this
chapter we present a modified version of this model, discuss the choice of
model parameters and show results of computational experiments devoted to
simulating α-helices and all-α proteins.

The chapter is organized as follows. In Section 2 we provide a very short
description of the chemical structure of a protein to better understand the ter-
minology used in the remainder of the chapter. In Section 3 we introduce the
three main computational approaches to the protein fold prediction problem:
homology modeling, fold recognition and ab-initio methods. In Sections 4 and 5
we provide a brief description of energy functions and global optimization tech-
niques, that characterize a variety of ab-initio approaches. Following Klepeis
and Floudas [37], ab-initio methods can be further classified as ab-initio meth-
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ods that require database information and “true” ab-initio methods, that are
based only on information obtained from physicochemical principles. A survey
of methods falling into both classes is provided in Sections 6 and 7. Among
the true ab-initio methods, we present also recent approaches based on topo-
logical features of the proteins. This survey is not meant to be exhaustive; it
rather gives an idea of the evolution of main trends in the ab-initio protein
folding research, along with successes and limitations. In Section 8 we focus
on a specific topological model and give the mathematical description of the
corresponding constrained global optimization problem, while in Section 9 we
discuss how the values of the model parameters have been chosen. In Sec-
tion 10, after a short presentation of the Simulated Annealing algorithm used
to solve the optimization problem, we report results of our computational
experiments. A few concluding remarks are given in Section 11.

2 The Chemical Structure of a Protein

A protein is a polymer composed by a sequence of genetically driven amino
acid residues. Proteins in living cells are built from a set of only 20 different
amino acids, all having two main substructures: a common basic substruc-
ture composed by an amide group (NH2), a carboxyl group (COOH) and a
hydrogen atom (H), all linked to a central carbon atom called Cα, and a sub-
structure that differentiates each amino acid, called side chain or R-group,
composed by chemically different residues. A schematic representation of an
amino acid is given in Figure 2. The carbon atom of the carboxyl group is usu-
ally called C’. Consecutive amino acids are connected by a peptide bond, i.e.
the carboxyl group of the i-th amino acid of the sequence is linked, through
a covalent bond, to the amide group of the (i + 1)-th amino acid and a H2O
molecule is released, as shown in Figure 2. Therefore, the whole structure of
the protein consists of a “main chain” of atoms, made of the linked NCαC’O
components of amino acids, and a number of side chains, with a shape similar
to a fishbone. For this similarity, the main chain is also called backbone. The
sequence of amino acids specific of each different protein is called primary
structure.

As previously observed, the information contained into the chain of amino
acid residues determines the unique three-dimensional conformation of a pro-
tein, i.e. its own native state or tertiary structure. Folded proteins usually
contain one or more local, repetitive spatial arrangements of amino acid
residues, with characteristic conformations, called secondary structures. The
most common secondary structures found in proteins are α-helices, β-sheets
and loop/turns. Examples of α-helices and β-sheets are given in Figure 2.

Protein tertiary structures can be described in terms of bond lengths (i.e.
distances between two atoms connected with a covalent bond), bond angles
(i.e. angles between two adiacent bond vectors, where a bond vector is iden-
tified by two atoms connected with a covalent bond) and dihedral angles
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(i.e. angles between the normals to the planes defined by suitable consecu-
tive triplets of atoms). When the protein is at its equilibrium state, the bond
lengths and bond angles can be considered approximately fixed, so that the
three-dimensional conformation is determined by the dihedral angles. These
angles are conventionally denoted with the letters Φ, Ψ , ω and χ. The former
three angles characterize the protein backbone, while the latter is related to
the side chains. A representation of Φ, Ψ and ω is given in Figure 2, where
the indices i − 1, i and i + 1 identify three consecutive amino acid residues.
For more details the reader is referred, for example, to [53].

Fig. 1. Schematic representation of an amino acid.

3 Computational Approaches to Protein Fold Prediction

Computational approaches to predict protein three-dimensional conforma-
tions are usually classified as homology modeling (or comparative modeling),
fold recognition (or threading) and folding ab initio (see, for example, [18]).

Homology modeling is based on the idea that proteins having strong se-
quence similarity have also strong structure and function similarity. Given a
sequence of amino acid residues, homology modeling methods essentially try
to align the target sequence to suitable structure templates, stored in protein
databases, and build a three-dimensional conformation by using alignment
information (see, for example, [14, 17, 79]). Different alignment methods have
been developed, such as BLAST [3], PSI-BLAST [4] and the profile-profile
method [41]. The main limitation of the homology modeling methods is that
they work effectively only for sequences with at least 30-40% identity. For
smaller identity percentages, they have a low reliability (see, for example,
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Fig. 2. A peptide bond between two amino acid residues.

(a) (b) (c)

Fig. 3. Examples of protein secondary structures: α-helix (a), parallel β-sheet (b),
anti-parallel β-sheet (c).

[22]). A further limitation is that only 15-25% of sequences have homologous
proteins with known three-dimensional conformation in a given genome.

Fold recognition methods are based on the idea that there may be only a
limited number of different protein folds. Therefore, they try to predict the
protein conformation from known three-dimensional structures that do not
have homologous characteristics. To this aim, a library of structure templates
is defined, then the target sequence is fitted to each library entry and an
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Fig. 4. The protein dihedral angles Φ, Ψ and ω.

energy function is used to evaluate the fit and hence to determine the most
suitable template. Obviously, the quality of the obtained model is limited by
the actual presence of the correct template into the database and by the actual
similarity of the selected templates.

Ab-initio methods are potentially able to predict three-dimensional con-
formations not yet been observed experimentally. The basic idea behind these
methods is that, according to thermodynamic principles, a protein sponta-
neously folds into its native state, which corresponds to a global minimum
of free energy. As already observed, ab-initio techniques can be divided into
two categories, one including the methods that use knowledge-based informa-
tion, such as secondary structure information stored in databases, the other
including the methods that do not exploit structural databases during folding
predictions.

As discussed in [27, 61], ab-initio methods are generally characterized by
suitable protein representations, by energy functions that take into account
physicochemical interactions, and by efficient algorithms to search the feasible
conformational space. Computational models of proteins explicitly treating all
degrees of freedom are currently impractical because of the huge size of the
conformational space, of the large number of intramolecular/intermolecular
interactions and of the protein complex topology. Both high-resolution and
low-resolution models introduce simplifications. High-resolution models taking
into account detailed information about the protein conformation are more
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rigorous, but lead to problems that are more difficult to be solved. On the
other hand, low-resolution models, based on simplified molecular descriptions
or structural restraints, can provide only simplified fold descriptions, but are
able to give insights into thermodynamic and kinetic properties of the protein
folding process.

4 Energy Functions

Energy modeling plays a critical role in protein folding simulations. A large
number of energy functions, also called force fields, has therefore been devel-
oped to represent the interactions among protein atoms. To better understand
the ab-initio methods presented in Sections 6 and 7 we give a short description
of energy functions. This description follows [21]; for more details the reader
is referred there and to references therein.

Over the years, a large number of energy models has been empirically
developed for the protein folding problem, such as AMBER [93], CHARMM
[15], ECEPP [57, 58], ECEPP/2 [59], ECEPP/3 [60], MM2 [1] and MM3 [2].
These models are typically expressed as the sum of potential energy terms rep-
resenting bonded interactions, i.e. related to bonds, bond angles and dihedral
angles, and nonbonded interactions, such as van der Waals and electrostatic
ones. These potentials are usually described in terms of relative distances of
atoms or atom aggregates.

A simple model of bond potential energy is

Ebond = kbond(r − r0)2,

which measures how much the bond length r is far from its ideal value r0. The
constant kbond > 0 is called “spring constant”, in analogy with Hooke’s law.
This model provides a good approximation of the bond potential just on small
motions around the equilibrium configuration. A more detailed representation
of bond stretching is obtained by considering the so-called Morse potential:

Ẽbond = k̃bond(1− ea(r−r0))2,

with k̃bond, a > 0. However, the first potential is usually considered because it
is simpler to evaluate than Morse potential. Small protein structures obtained
by X-ray crystallography are typically used to compute r0.

Angle bending energy is associated with vibrations around the equilibrium
bond angle θ0, therefore its potential can be modeled by Hooke’s law too:

Eangle = kangle(θ − θ0)2.

The value of θ0 depends on the triplet of atoms defining the bond angle θ and
kangle and controls the angle stiffness.

Tortional energy potentials are used to describe the internal rotation en-
ergy of dihedral angles. These potentials are usually modeled as
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Edihedral =
3∑

n=1

Vn

2
[1 + cos(nψ − γ)]

where the Vi’s are rotation energy barriers, ψ is the torsion angle and γ is the
angular offset. Note that some force fields neglect bond stretching and angle
bending energies, thus taking into account only torsonal energy.

Nonbonded interactions involve atoms that are not linked by covalent
bonds. Usually, non bonded energy terms account for the electrostatic en-
ergy and the van der Waals energy.

On each peptide bond between two amino acid residues there is a dipole
which is orthogonal to the N −C bond. The energy of this dipole is described
by the Coulomb law:

Eelect
ij =

qiqj

4πε0rij

where qi and qj are the magnitudes of the two charges of the dipole, rij is the
distance between the charges and ε0 is the dielectric constant.

The main energy involved in the protein stabilization is the non-bonded
van der Waals energy, arising from a balance between attractive and repulsive
subatomic forces. Attractive forces are longer range than repulsive forces, but,
if the distance among atoms is short, they become dominant. This leads to
an equilibrium distance in which repulsive and attractive forces are balanced.
The van der Waals interaction between two atoms i and j is often modeled
through a Lennard-Jones potential, which includes attraction and repulsion
terms:

EvdW
ij =

aij

(rij)12
− bij

(rij)6
.

The constants aij and bij control the depth and the position of the potential
energy well.

The solvent, usually water, has a fundamental influence on the structure,
dynamics and thermodynamics of biological molecules, both locally and glob-
ally. One of the most important solvent effects is the screening of electrostatic
interactions. This can be taken into account implicitly, by including a further
dielectric constant εr in the electrostatic energy potential:

Eelect+solv =
qiqj

4πε0εrrij

A more rigorous treatment of solvent effects can be obtained by considering
the Poisson-Boltzmann equations. As an alternative, the solvent is explicitly
taken into account, by using models based on the assumption that solvation
energy is proportional to the protein surface area exposed to the solvent, or
to the solvent accessible volume of a hydration layer. These models account
also for cavity formations [39].

From a thermodynamic point of view, the difference between two molecular
conformations is determined by their difference in free energy, that is defined
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in terms of enthalpy, H, entropy, S, and absolute temperature, T , of the
molecular system:

Efree = H − T · S.

A direct computation of the free energy requires detailed molecular dynamics
simulations and hence is too costly. A generally accepted alternative approach
based on statistical mechanics describes the free energy contributions by using
harmonic approximations [31].

5 Optimization Solvers

As previously observed, ab-initio methods search for conformations corre-
sponding to the global minimum of some energy function, under suitable
constraints, i.e. lead to constrained global optimization problems. Hence, it is
useful to give a brief description of optimization solvers applied in this con-
text. We focus here on the solvers that are used in the protein fold prediction
methods described in the next sections. For more details the reader is referred
to [21, 33, 62, 63, 64].

The global optimization solvers can be divided into two main classes:
heuristic and deterministic. The former includes methods based on proba-
bilistic descriptions, for which convergence to a solution is not ensured, or
only a convergence in probability is demonstrated. The latter contains meth-
ods that, under suitable hypotheses, provide convergence to a solution of the
global optimization problem.

Monte Carlo (MC) methods [19] are heuristic methods that simulate the
evolution of a system in terms of probability distribution functions. They
generate many approximate solutions by random sampling from a probability
distribution and get the target solution as an average over the generated sam-
ples. In many applications, the variance corresponding to the average solution
can be predicted, obtaining an estimate of the number of samples needed to
achieve a given error. Enhancements of the basic MC strategy have been de-
veloped to reduce the possibility of getting trapped into local minima. They
include Replica Exchange Monte Carlo (REM) [91], Parallel Hyperbolic Sam-
pling [96] and Electrostatically-Driven Monte Carlo (EDMC) [72] methods.

A further improvement over MC methods is provided by Simulated An-
nealing (SA) methods [40, 52]. They are based on an analogy with the an-
nealing physical process that consists in decreasing slowly the temperature of
a given system (e.g. a liquid metal) in order to obtain a crystalline structure.
SA methods are iterative procedures that, at each step, execute a Metropolis
Monte Carlo algorithm that generates a new candidate approximation of the
solution, by applying a random perturbation to the previous one. Through a
random mechanism controlled by a parameter called temperature, it is decided
whether to move to the candidate approximation or to stay in the current one
at the next iteration. The acceptance/rejection of the new approximation is
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usually based on the evaluation of the so-called Metropolis acceptance func-
tion, that is a probability function based on the Boltzmann distribution [55].
Higher temperatures correspond to a larger number of accepted conforma-
tions. The temperature parameter plays a crucial role in the whole process; it
must be decreased very slowly, to avoid the simulation gets trapped in a local
minimum close to the initial state. A modification of the SA strategy called
Monte Carlo Minimization (MCM) has been also developed, that applies a
local Monte Carlo minimization to the current conformation, before checking
if the Metropolis acceptance criterion is satisfied [73, 74]. We come back to
Metropolis Monte Carlo Simulated Annealing in Section 10.1, since we used
this method in our experiments.

Genetic Algorithms (GAs) are heuristic methods based on principles from
the evolution theory. Indeed, they represent each feasible point in the confor-
mational space as a chromosome and mimic the evolution of a population of
chromosomes. Two chromosomes can generate child chromosomes (crossover
operation) and a chromosome can undergo mutations. Furthermore, chromo-
somes are selected depending on their fitness value, which is defined taking
into account the objective function to be minimized. Starting from an initial
population, GAs set up an iterative process, where a child population is gen-
erated at each step from a parent one, by applying the above evolutionary
mechanisms, until suitable termination criteria are satisfied. GAs differ by
the mechanisms used to simulate mutation and crossover and by the fitness
function. As noted in [21], the choice of these mechanisms greatly influences
the ability of finding global minimum energy configurations. A review on GAs
is given in [87].

Conformational Space Annealing (CSA) methods work with typical con-
cepts of SA, GAs and MCM. As in GAs, an initial population of variables
called first bank is generated and then a subset of bank conformations called
seeds are selected. The seeds are perturbed, by replacing (typically small)
seed portions with the corresponding portions of bank conformations, and
are used as trial conformations, to obtain a new bank. As in MCM, a local
minimization is applied to all conformations to work only with the space of
local minima. The diversity of sampling is controlled by comparing a suit-
able distance measure between two conformations with a cutoff value, Dcut.
A trial conformation is compared with the closest one in the current bank. If
their distance is smaller than Dcut, they are considered similar and the one
with lower energy is chosen. Otherwise, the highest energy conformation in
the bank plus the trial one is discarded. The cutoff value is slowly decreased
during the simulation process and hence acts as the temperature parameter in
SA. The algorithm usually stops when all the bank conformations have been
used as seeds and the cutoff parameter has reached a suitably small value.
More details can be found in [32, 47].

An example of deterministic global optimization strategy is provided by
Molecular Dynamics (MD) simulations. MD methods simulate the evolution
of a molecular system by applying the equation of motion to the atoms of
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the system. They have been able to provide detailed information about het-
eropolymers and to give insights into complex dynamic processes occurring in
biological systems, such as protein folding [16].

Branch and Bound (BB) methods fall into the class of deterministic global
optimization methods too. These are iterative methods that, at each step, find
lower and upper bounds on the global minimum objective value. The itera-
tions are stopped when the difference between the bounds is smaller than a
given tolerance. Recently, a deterministic BB algorithm named αBB has been
developed by Floudas et al. and applied to molecular conformation problems
[6, 35, 36]. αBB determines the upper bounds by function evaluation or lo-
cal minimization of the original objective function, while the lower bounds are
computed by minimizing convex lower-bounding functions obtained by adding
a convex term to the original one. The lower-bounding functions depend on a
parameter that controls their shape and must be properly chosen to guarantee
convexity. Lower-bounding functions are built in such a way that they have
properties ensuring the convergence of the algorithm to a global minimum.

6 Ab-initio Methods Using Knowledge-Based
Information

Ab-initio methods with knowledge-based information usually build template
models by extracting from databases fragments with sequence or structural
similarity to fragments of the target sequence. Therefore, there is no clearly
defined separation between these methods and the homology modeling or fold
recognition ones. Ab-initio methods exploiting both approches are discussed
in the next two Sections.

6.1 Lattice models

To reduce the degrees of freedom of the conformational space, models have
been developed that are based on a simplified representation of the protein
chain over a lattice. These lattice models use secondary structure predictions
and threading techniques to derive some constraints; then, they search the con-
formational space by applying Monte Carlo procedures to the lattice. Because
of these semplifications, lattice models are generally two orders of magnitude
faster than high-resolution models [45]. On the other hand, simplified models
of proteins lead to a loss of dynamic mechanisms, so that often predicted con-
formations do not fit native structures suitably. First lattice studies did not
focus on protein structure prediction, but rather on understanding thermody-
namic and kinetic properties of protein folding. Indeed lattice models have a
long history in modeling polymers, due to their analytical and computational
simplicity.

Early in the ’90s, Levitt et al. [49] developed a low-resolution method,
based on a simple representation of the protein backbone as a self-avoiding
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chain of connected vertices on a tetrahedral lattice, with several amino acid
residues assigned to each lattice vertex. To reduce the space of feasible lattice
structures, this model requires the final conformations to be compact and
globular. Effects of solvent interactions are not considered, because the lattice
model did not represent accurately the exposed surface of a conformation.
Starting from observed contact frequencies in X-ray structures, the energy of
contact between two lattice vertices is defined and a dynamic programming
strategy is applied to find the best conformational energy. This model was
validated on real proteins with 52-68 amino acid residues and correct low-
resolution structures were found [49]. A drawback is that it can be applied
only to proteins with a small number of residues; furthermore, it does not
consider interatomic interactions.

Lattice models have undergone an evolution over the years. In [77, 94]
Levitt and co-workers presented a lattice-based hierarchical approach. In this
case, starting from the sequence of amino acid residues, all feasible compact
conformations are identified by using a highly simplified tetrahedral lattice
model; a lattice-based scoring function is used to select a subset of these
conformations and to build high-resolution (all-atom) models. Then, by using
a knowledge-based scoring function, three small subsets are extracted from
the set of all-atom models and a procedure based on distance geometry is
used to generate the best conformations from each of the subsets. Using this
approach, structures of proteins with at most 80 residues were predicted,

obtaining RMSD values ranging from 4.1 to 7.4
◦
A [77]. Unfortunately, the

method failed for proteins with complex supersecondary structures.
Lattice models have been also studied by Skolnick and co-workers [43, 44].

They developed a lattice model of the protein structure and dynamics in
which the polypeptide chain is represented with a simple cubic lattice. The
emphasis is on the side chain role, rather than on geometry of the backbone.
The backbone is treated implicitly, since the Cα coordinates are computed by
considering the positions of three consecutive side chains. The energy func-
tion takes into account sequence independent properties, such as interactions
between the i-th and the (i + 4)-th residues in the α-helix side chains or long
distance interactions in the β-sheets, and sequence dependent properties, such
as long-range pairwise and multibody interactions that simulate hydrofobic
effects. The lowest energy conformation corresponding to the native state is
searched by a Replica Exchange Monte Carlo (REM) procedure [91]. The
model was tested on small and structurally simple single-domain proteins
considering two sets of sequences, one corresponding to single fragments of
known structures, the other to known protein tertiary structures. The best
results, evaluated by using the RMSD values of the predicted versus the orig-
inal conformations, were obtained for the set of single fragments. The method
evolved into a hierarchical ab-initio lattice approach that uses a combination
of multiple sequence comparison, threading, clustering and refinement [83].
In this approach, the starting fragmentary templates for the lattice model
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are provided by a threading algorithm and a reduced representation of the
protein conformational space is used, where the center of mass of the Cα and
side-chain atoms are the interaction centers. The energy function is defined
through a statistical analysis of known protein structures, leading to statistical
potentials for pairwise and multiboby side-chain interactions. The conforma-
tional space is sampled by the REM procedure. This method is called SICHO
(SIde CHain Only). Results presented at CASP4 meeting [70] showed that it
is able to obtain good results on small proteins of not too complex topology
[83].

Another structure prediction lattice-method that combines homology and
ab-initio modeling is TOUCHSTONE, developed by Skolnick et al. [84]. A
first version of this method is based on the SICHO lattice model, with force
field including short-range structural correlations, hydrogen-bonding interac-
tions and long-range pair-wise potential. Two threading restraints are used to
reduce the conformational search space, concerning side-chain contacts and
local distances. The former restraint is obtained by using the PROSPECTOR
threading algorithm [71], while the latter is derived from sequence alignments
and threading of short sequence fragments. REM is used to search the confor-
mational space. To generate another set of indipendent trajectories, a Monte
Carlo sampling scheme, called Parallel Hyperolic Sampling (PHS) [96], is used.
Then the structures generated by the simulations are rebuilt at an atomic
detail. This method was applied to the genome of Mycoplasma genitalium
bacterium, that has one of the smallest known genomes among living organ-
isms [85]. 85 proteins with at most 150 amino acid residues were examined,
obtaining a correct prediction of the topology of 63% of the proteins.

As discussed in [85], the potential function used in TOUCHSTONE is not
suitable for predicting multiple-domain structures. To overcome this limita-
tion, both the lattice representation and the force field have been modified
[86, 97]. The SICHO model has been replaced by the CABS one, in which
the Cα trace is confined to a lattice system, while the group made by the
side chain and the Cβ carbon are off-lattice, with positions determined from
three adjacent Cα atoms. The energy function takes into account pairwise and
multiboby side-chain interactions, short- and long-range hydrogen-bond inter-
actions, contact and local distance restraints obtained through PROSPEC-
TOR, burial and electrostatic interactions, global propensities to predicted
contact orders and contact numbers, and local stiffness of global proteins.
The conformational space search method is PHS, as in the previous TOUCH-
STONE version.

Experiments were carried out on a set of 125 proteins (43 all-α proteins,
41 all-β proteins and 51 α/β-proteins, according to Kabsch and Saunder clas-
sification [30]), with lengths ranging from 36 to 174 amino acid residues. By
using PROSPECTOR restraints, 83 proteins were successfully folded. Com-
parisons with the previous TOUCHSTONE version showed the efficiency of
CABS versus SICHO. Furthermore, it was observed that short-range restraints
considerably speedup local structure formations.



404 G. Ceci et al.

Recently, a high-resolution lattice model has been developed by Kolinski
[45] that is based on a representation of the protein backbone over a lattice
and on the REM searching procedure. For each residue, this model takes into
account the Cα and Cβ carbons, the side-chain and an additional atom located
along the Cα − Cα virtual bound. Only the Cα coordinates are explicitly
computed and are used, together with amino acid properties, to calculate the
coordinates of off-lattice elements. The force field is based on the CABS model
and the potential used takes into account short- and long-range interactions.
The simulation process is based on Metropolis Monte Carlo scheme, subject
to a simulated annealing procedure or controlled by REM. This lattice model
can be applied to perform ab-initio structure predictions as well as in multi-
template comparative modeling [45].

6.2 Methods Based on Fragment Assembly

The idea behind these methods is to build protein tertiary structures from
small protein segments or secondary structures, obtained through sequence
alignment or threading.

Such an approach is implemented, for example, in FRAGFOLD, devel-
oped by Jones et al. [26, 28]. In FRAGFOLD simulations, the first step is
the selection from a library of protein structures of suitable supersecondary
structural fragments at the position of each residue of the target sequence, and
hence the prediction of secondary structures by using PSIPRED [25], which
applies neural-network techniques and PSI-BLAST sequence alignments. The
predicted secondary structures are used as input to FRAGFOLD. Random
conformations are then generated until a conformation with no steric clashes
is obtained. Starting from this one, a Simulated Annealing algorithm is applied
to minimize an energy function, which is a weighted sum of terms express-
ing short- and long-distance pair potentials, single-residue solvation energy,
steric interactions (such as the van der Waals energy), and hydrogen-bond
interactions. Results presented at CASP4 and CASP5 [26, 28] showed that
FRAGFOLD can correctly predict local domains, but fails in predicting en-
tire three-dimensional structures. In particular, there are problems with the
prediction of β-structures, since the formation of these structures is a coop-
erative process requiring the convergence of many substructures.

Another method which exploits sequence alignment and fragment assem-
bly is Rosetta, developed by Baker et al. [12, 13, 81, 82]. This method is based
on the assumption that the distribution of conformations of each three- and
nine-residue segment can be reasonably approximated by the distribution of
structures adopted by the corresponding sequence (or closely related ones) in
known protein conformations. Therefore, Rosetta breaks the target sequence
into three- and nine-residue segments and applies a profile-profile compari-
son procedure to extract fragment libraries from protein structure databases.
The fragments are assembled to build three-dimensional structures by using a
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fragment insertion Metropolis Monte Carlo procedure. Many of such template-
based models are generated and then clustered. For sequences with less than
100 residues, an all-atom refinement is used instead of clustering. The en-
ergy function used in searching the conformational space describes sequence-
dependent properties, such as non-local interactions (e.g. disulfide bonding,
backbone hydrogen bonding, electrostatics) and sequence-independent prop-
erties, connected to the formation of α-helices, β-strands and to the assembly
of β-strands into β-sheets. Only the backbone atoms are considered explicitly,
while the side chains are represented as centroids.

Rosetta underwent a significant evolution since its development. The im-
provements concern the application of filters to reject non-protein-like con-
formations (local low-order contact conformations and β-strands not prop-
erly assembled into β-sheets) [76], the modifications of the methodology for
picking up fragments from the structure database, in order to ensure a re-
markable diversity of secondary structures when dealing with segments with
a weak propensity to fold into a single secondary structure, the use of a new
prediction method, JUFO [29], and the exploitation of quantum chemistry
calculations, traditional molecular mechanics approaches and protein struc-
tural analysis to compute parameters in the energy function [12, 13]. A neural
network method is under development with the aim of identifying strand-loop-
strand motifs starting from the protein primary structure [46].

Rosetta was applied to CASP5 targets. In particular, for α- or α/β-proteins
Rosetta generated models with a correct overall topology and RMSD values

ranging from 2.8 to 4.2
◦
A. Rosetta method failed for proteins having more than

280 residues and a complex topology; furthermore, it sometimes generated
models being too globular or having β-strands less exposed than in the native
conformation.

7 Ab-initio Methods Without Knowledge-Based
Information

Knowledge-based ab-initio methods are dependent on the information stored
in structural databases and on statistical analysis of this information; hence
they can produce inaccurate predictions of new folds. A way to overcome this
problem is offered by “true” ab-initio methods which simulate the folding
process by using only protein models based on physicochemical principles.
These methods are obviously more challenging, since they require “realistic”
representations of atomic interactions and powerful algorithms and computa-
tional resources to search the feasible conformational space. A few examples
of ab-initio methods without database information are discussed in the next
sections.
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7.1 Hierarchical Approaches

Hierarchical approaches start from a reduced representation of protein atoms
and their interactions and then refine computed reduced conformations to
obtain all-atom structures to be optimized.

A simple hierarchical approach to protein folding is given by LINUS (Lo-
cal Independently Nucleated Units of Structure), developed by Srinivasan and
Rose [89, 90]. This procedure has been used to predict secondary structures
and to capture a physical interpretation of protein secondary elements. In-
deed, Srinivasan and Rose used LINUS to support the physical theory that
secondary structure propensities are mainly determined by competing local
effects, involving conformational entropy and hydrogen bonding.

A Metropolis Monte Carlo procedure is applied to search the conforma-
tional space. The amino acid sequence is considered as an extended chain,
where the backbone atoms are represented as points, while the side chains are
modeled as different nonoverlapping spheres, according to amino acid type and
size. The degrees of freedom are the dihedral angles, Φ, Ψ and χ. A Metropo-
lis Monte Carlo procedure is used to search the conformational space. More
precisely, the extended chain is subdivided into subsequences of three consec-
utive residues, proceeding from the N-terminus to the C-terminus, that are
perturbed by using a predefined set of random moves to obtain a new config-
uration. This configuration is accepted or rejected according to a Metropolis
acceptance criterion based on attractive and repulsive contributions [90]. This
cycle is completed when all the chain residues have been processed.

LINUS was used also by Maritan and co-workers in order to estimate
the rate of successful secondary structure predictions as a function of the
temperature [24]. In particular, they showed that at low temperatures lo-
cal interactions are facilitated and stabilized, leading to α-helices and turns;
consequently, β-strands are favoured at high temperatures. At intermediate
temperatures some protein subsequences tend to fold into β-strands, while
others into α-helices and turns. They also found that α-helices and β-strands
can be predicted with an accuracy greater than 40% [24].

A different hierarchical approach has been developed by Scheraga and co-
workers [78] to capture pairwise and multibody interactions during the folding
process. In this approach, a set of low-energy structures is computed first, by
using a reduced model based only on the Cα trace and on the so-called UN-
RES (UNited-RESidue) potential force field [50, 51], to describe intra-protein
interactions and hydrogen bonding. The conformational space is searched by
a Conformational Space Annealing (CSA) algorithm [47]. The virtual-bond
chains of these low-energy structures are converted to an all-atom backbone,
by using the dipole-path method based on alignment of peptide-group dipoles
[50]. The backbone conformation is optimized by using EDMC [72], a pro-
cedure that iteratively looks for low-energy structures in the conformational
space and takes into account electrostatic interactions and thermal effects.
All-atom side chains are added to the previous model under constraints of
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non-overlap; loop and disulfide-bonds are then treated explicitly. The final
conformation is obtained by using the ECEPP/3 all-atom energy function
[60], with gradual reduction of the Cα-Cα distance of the parent united-
residue structure. The ECEPP/3 energy function is the sum of electrostatic,
hydrogen-bonded, torsional and non-bonded terms.

The method above described was successfully applied to single-chain pro-
teins as well as to multiple-chain ones. In the latter case, in order to obtain
correct predictions, interchain interactions were taken into account by suitably
modyfing UNRES and CSA [78].

7.2 A Combinatorial and Global Optimization Approach

A novel true ab-initio approach for the prediction of three-dimensional struc-
tures of proteins is implemented in ASTRO-FOLD, developed by Floudas
and co-workers [33, 35, 36, 38, 39]. ASTRO-FOLD combines the classical hi-
erarchical view of protein folding, in which the folding process starts from
rapid formation of secondary structures and then proceeds to the slower ter-
tiary structure arrangement, with the hydrophobic-collapse view, in which
secondary and tertiary structures are formed concurrently. The prediction of
a protein conformation is performed into four steps. First, initiation and ter-
mination sites of α-helices are identified, then β-strands are identified and β-
sheet topologies are predicted, and, later, constraints on the protein structure
and information on loop segments are derived. Based on the previous informa-
tion, the overall protein tertiary structure is predicted by using a model that
combines both the above views of the protein folding process and by applying
deterministic global optimization, stochastic optimization and torsion-angle
dynamics. Therefore, ASTRO-FOLD can be defined as combinatorial and
global optimization framework based on a four-step approach.

The main idea behind α-helix determination is that the fold of such sec-
ondary structure is based on local interactions. Hence, in order to identify local
sites of helix formation, the amino acid sequence is segmented into overlapping
oligopeptides and ensembles of low potential states are computed, along with
a global minimum energy state, using a detailed atomic level model based
on the ECEPP/3 force field [60]. The determination of these state is per-
formed by applying the deterministic branch-and-bound algorithm α-BB [20]
and the stochastic CSA algorithm [32, 47]. Free energy calculations are then
performed, with a force field which is the sum of potential, entropic, solva-
tion, ionization and internal cavity contributions. The energy values are used
to compute the probability that each oligopeptide folds into a helix and to
define a helix propensity for each residue.

Once α-helices have been identified, the remaining residues are analyzed
to identify the locations of β-strands and β-sheets, and to predict β-sheet
topologies as well as disulfide bridges. Since the formation of such structures
is driven by long-distance interactions, a different approach is used. The key
assumption is that β-structure formation depends on hydrophobic forces [37];
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to model them, the prediction of hydrofobic residue contacts is required. To
predict a β-sheet, β-strand superstructures are postulated that encompass
all the β-strand substructures that may constitute the β-sheet topology. The
mathematical model of the superstructures is formulated as a global opti-
mization problem, whose solution maximizes contacts between hydrophobic
residues, subject to constraints enforcing physically meaningful configurations
for β-strands and disulfide bridges. This approach is used to identify a rank-
ordered list of possible β-sheet structures.

Once α-helices and β-sheets have been identified, secondary structure re-
straints are defined. Dihedral angles, atomic distance and Cα − Cα distance
bounds are defined according to the main properties of corresponding sec-
ondary structures. Restraints for unassigned residues are also defined either
through an analysis of overlapping oligopeptides, such as for α-helices identi-
fication, or through predictions of entire loop fragments. Both approaches are
implemented by exploiting deterministic and stochastic optimization solvers.

The final stage of ASTRO-FOLD is the prediction of the protein tertiary
structure. This problem is formulated as the global minimization of a suitable
potential energy, subject to the restraints above discussed. This problem is
solved by a combination of α-BB and torsion angle dynamics [35].

As reported in [36], ASTRO-FOLD was tested on CASP5 targets of at
least 150 residues, obtaining accurate α-helix and β-strand and impressive

β-sheet predictions. Indeed, RMSD values ranging between 4.1
◦
A and 6.9

◦
A,

and SOV [95] values corresponding to more than 80% accuracy have been
obtained for the computed conformations.

As noted in [36], the application of ASTRO-FOLD to medium-size pro-
teins was made possible by using distributed computing environments. The
framework was parallelized by taking into account the different problems and
solvers at each stage the prediction process.

7.3 Topological Approaches

Experimental and theoretical studies have shown that the folding process is
widely influenced by topological properties of the native state. For example, by
analyzing a small set of non homologous simple single domain proteins, Baker
and co-workers revealed that a statistically significant correlation exists be-
tween folding kinetics and native state topological complexity [69]. Starting
from their results, Koga and Takada studied the relationships between na-
tive topology and folding pathways [42]. By using a simple representation of
the polypeptide chain through its Cα trace and a free-energy functional ap-
proach, that takes into account chain connectivity, contact interactions and
entropy, they were able to correctly describe folding pathways of small single-
domain proteins. The correlation between the topology of the native state
and the folding pathways was confirmed by Maritan et al. [80], by performing
molecular dynamics simulations of the immunoglobulin, using a model that
represents only the Cα carbons and an energy function that includes bonding
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and non-bonding terms. Other studies suggest that folding rates are correlated
to topological parameters such as contact order and cliquishness [56].

An interesting topological approach to the protein folding problem has
been proposed by a research group led by Banavar and Maritan [7, 8, 9, 10, 54].
In this approach, a protein is modeled as a tube of nonzero thickness without
any self-contacts (see Figure 7.3). The axis of the tube is a suitable curve in-
terpolating the Cα carbons and the thickness is expressed in terms of a metric
that measures the “distance” among any three points on the curve, xi, xj , xk,
as the radius r(xi, xj , xk) of the circle passing through them (r is assumed to
be infinity if the points are aligned). Note that 1/(r(xi, xj , xk)p, p > 0, can be
regarded as a three-body potential and hence the tube thickness is related to
a certain interaction energy among chain particles [23]. Indeed, the modeled
structure is energetically stable, i.e. its conformation corresponds to a mini-
mum of free energy, when it achieves a maximum thickness under constrains
preventing self-intersection and aligned triplets of amino acids. As pointed
out in [7], despite its simplicity, this model is able to capture the physical
thickness of the protein chain, that is due to the presence of the R-groups.
Furthermore, a nonzero thickness implies that the interactions between two
spatially close tube segments do not depend only on their distance, but also on
their relative orientation, so the tube model is able to represent the inherent
anisotropy associated with the local directionality of the chain.

Fig. 5. The sequence of N -Cα-C′ units of the crambin helix composed of the amino
acids 7÷ 17. The picture is similar to a thickened tube.

Numerical simulations based on the above model are reported in [7, 10, 92].
Different constraints have been considered to take into account the compact-
ness of a polymer chain, such as a pairwise attractive potential with a given
range [7], or suitable bounds on the global and the local gyration radius or on
the contact distance and the number of allowed contacts [92]. A Metropolis
Monte Carlo procedure has been used to search the conformational space,
obtaining helix- and hairpin-like structures.

We have focused our attention on the tube model, because it appears both
simple and capable of representing significant features of the protein chain.
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Next sections are devoted to describe a modified version of it and related
computational experiments.

8 A Modification of the Tube Model

Following [10, 23], we provide a more detailed description of the tube model,
which is the basis of our computational approach. Let X = (x1, x2, . . . , xn) be
a n-ple of different points called conformation, where each xi ∈ <3 represents
the position of the Cα atom of the i-th amino acid residue of the polypep-
tide chain. The interaction among any three non-aligned points xi, xj , xk can
be measured by the radius of the unique circle among them, which has the
following expression:

r(xi, xj , xk) =
||xi − xj ||||xi − xk||||xj − xk||

4A(xi, xj , xk)
=
||xi − xj ||
2| sin θ|

where || · || is the Euclidean norm, A(xi, xj , xk) is the area of the triangle with
vertices xi, xj and xk, and θ is the angle between the vectors xi − xk and
xj − xk. If the three points are aligned, A(xi, xj , xk) and sin θ are null, hence
the above definition can be extended to these points by setting r(xi, xj , xk) =
∞. Note that r(xi, xj , xk) can be viewed as an approximation of the standard
radius of curvature. Indeed, if the three points vary over a simple (i.e. without
knots) and smooth curve C, then

lim
xj ,xk→xi

xj ,xk∈C

r(xi, xj , xk) = ρ(xi),

where ρ(xi) is the radius of curvature of C at xi. In the following, the radius
r(xi, xj , xk) is referred to as three-body radius.

The thickness of the conformation X can be defined as:

D(X) = min
1≤i,j,k≤n

i 6=j,j 6=k,k 6=i

r(xi, xj , xk). (1)

D(X) is a “discrete version” of the thickness ∆(C) of a simple and smooth
curve C, which is defined as the maximum thickness of a tube with axis C
and circular section, that does not exhibit any self-contacts. ∆(C) has the
following expression:

∆(C) = min
{

min
x∈C

ρ(x),
1
2

min
(x,y)∈Ω

||x− y||
}

,

where Ω is the set of all pairs of points of C such that x 6= y and the vector
x − y is orthogonal to the tangents to C at both x and y. In other words,
in the continuous case, the tube thickness is the smallest value between the



Computational Methods for Protein Fold Prediction 411

minimum radius of curvature of C and half the minimum distance of closest
approach over C. It can be proved that

∆(C) = min
x,y,z∈C

r(x, y, z),

where the definition of r is extended by continuity to coinciding points [23].
As pointed out in [10], the three-body radius is able to distinguish among

local and non-local interactions along the protein chain. When three consec-
utive particles are considered, a discrete version of the radius of curvature is
used to measure their interaction; when the particles are non-consecutive, the
distance of approach between two parts of the chain is taken into account (see
Figure 8). The thickness takes into account that the protein backbone cannot
have self-contacts and that the side chains cannot overlap; furthermore, it
provides a global measure of the free space in the protein conformation.

Fig. 6. Three-body radii of consecutive and non-consecutive points.

As observed in Section 7.3, finding an energetically stable conformation
can be achieved by maximizing the thickness under suitable constraints. On
the other hand, the tube model can be used to predict and analyze compact
tube-shaped conformations of given thickness. The latter conformations can
be obtained by maximizing a function counting the number of triplets having
a three-body radius close to a given thickness value D̄:

f(X) ≡ f(x1, x2, . . . , xn) =
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

fD̄(r(xi, xj , xk)), (2)

where

fD̄(r(xi, xj , xk)) =
{

1 if r(xi, xj , xk) ∈ [D̄ − ε, D̄ + ε]
0 otherwise (3)
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and ε is a real positive constant. As shown in Section 9, typical values of
thickness, characterizing protein structures, can be obtained by analyzing ex-
isting protein structure data sets; therefore, maximizing f(X) under suitable
constraints, using these typical values of thickness, can provide a means to
predict meaningful protein-like three dimensional conformations.

To increase global protein compactness, we have modified f by adding a
term forcing the points xi to be inside an ellipsoid, whose surface is thought as
a rough approximation of the protein surface shape. By changing the lengths
of the ellipsoid axes, different shapes can be approximated. The added term
has the following form:

g(X) ≡ g(x1, x2, . . . , xn) =
n∑

i=1

g(a,b,c)(xi) (4)

where

g(a,b,c)(xi) =





1 if
(x1

i − x1
G)2

a2
+

(x2
i − x2

G)2

b2
+

(x3
i − x3

G)2

c2
≤ 1

0 otherwise
, (5)

xG = (x1
G, x2

G, x3
G) is the barycenter of X, a, b and c are the lengths of

the ellipsoid semiaxes, and the superscripts are used to denote the Cartesian
coordinates of a point.

Constraints have been imposed to explicitly take into account that two
consecutive α-carbons are virtually bonded, hence their Euclidean distance
can have only slight variations, and that the Euclidean distance between any
two non-consecutive amino acid residues cannot fall below a certain thresh-
old. Furthermore, starting from the observation that in α-helices amino acid
residues with positions i and i + 2 along the chain are closer than in other
structures, a contraint on the Euclidean distance between xi and xi+2 has
been imposed to specifically simulate all-α conformations.

The global constrained optimization problem described so far has the fol-
lowing formulation:

max F (X) = max[f(X) + g(X)] (6)

subject to

c1 ≤ d(xi, xi+1) ≤ c2, ∀i ∈ {1, 2, . . . , n− 1}, (7)
c3 ≤ d(xi, xj), ∀i, j : i > j + 1, (8)
c4 ≤ d(xi, xi+2) ≤ c5, ∀i ∈ {1, 2, . . . , n− 2}. (9)

where c1, c2, c3, c4 and c5 are real positive constants chosen on the base of
experimental observations (see Section 9). The costraints (9) are specifically
related to all-α structures.
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9 Choice of Model Parameters

The problem (1)-(9) requires the choice of some parameters: the thickness D̄
and the related value ε in the definition of f (see (2)-(3)), the semiaxis lengths
a, b, c in the definition of g (see (4)-(5)) and the constants ci in the constraints
(see (7)-(9)).

The values of D̄ and ε have been chosen by performing an analysis of a set
of 3639 protein structures available in the PDBSELECT data collections with
R-factor < 0.25 and Resolution < 2.5 [65]. The thickness of each structure
has been evaluated, obtaining the thickness frequency distribution shown in
Figure 9.

Fig. 7. Frequency distribution of the thickness for a set of 3639 proteins from
PDBSELECT.

The thickness mean value is 2.40
◦
A, with a standard deviation of 0.10

◦
A;

the minimum thickness is 1.91
◦
A (achieved by only one structure), while the

maximum is 2.67
◦
A. The same analysis has been performed considering all

the α-helices (14592 structures) and all the β-sheets (13070 structures) sepa-

rately. The mean thickness value of the α-helices is 2.65
◦
A, with a standard

deviation of 0.07
◦
A, a minimum of 2.26

◦
A and a maximum of 4.58

◦
A. How-

ever, according to the small standard deviation value, more than 98.5% of the

α-helices have a thickness ranging between 2.50
◦
A and 2.90

◦
A. The frequency
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distribution of the thickness of the α-helices in the interval [2.50, 2.90] is re-
ported in Figure 9. The previous results agree with the fact that the α-helices

have very similar geometries. The mean value of the β-structures is 2.65
◦
A

too, but with a standard deviation of 0.46
◦
A, a minimum of 2.12

◦
A and a

maximum of 9.75
◦
A. Taking into account the low variability of the α-helices

thickness, in our experiments we focused our attention on α-structures.

Fig. 8. Frequency distribution of the thickness for a set of 14592 α-helices from
PDBSELECT.

A deeper analysis has shown that in the α-helices only few triplets of α-
carbons have a three-body radius equal to the thickness. For example, the
helix of the crambin (PDB code 1crn) composed by the amino acid residues

7 ÷ 17 has a thickness equal to 2.66
◦
A, but just the α-carbons 15, 16 and

17 have this three-body radius, while all the other triplets have a three-body

radius of at least 2.71
◦
A.

Since the term f in the objective function (2) counts the number of triplets
having a three-body radius close to D̄, we made some more studies to find
out frequent values of the three-body radius. We first analyzed the so-called
perfect helix, that is the stable conformation of the amino acid sequence made
only by alanine. In this helix, all the triplets (xi, xj , xk), with constant i − j
and j − k, have the same radius. All the triplets (xi, xi+h, xk), with h > 0
and i + h < k, and (xi, xk−h, xk), with h > 0 and k − h > i have the same
radius too. The most frequent triplets with the same radius are of the type
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(xi, xi+1, xi+3) and (xi, xi+2, xi+3), but the minimum radius, i.e. the thickness,
is achieved by the triplets (xi, xi+1, xi+2). The corresponding values, reported
in Table 9, show that the difference between the minimum radius and the

most frequent one amounts to 0.13
◦
A. We then considered the same type of

triplets in the PDBSELECT set and computed the mean radius values, and the
corresponding standard deviations, obtaining the results reported in Table 9.

In this case, the difference between the mean thickness values (2.65
◦
A) and

the triplet mean values is 0.10
◦
A for the triplets (xi, xi+1, xi+2) and 0.23

◦
A

for the triplets (xi, xi+1, xi+3) and (xi, xi+1, xi+3).

perfect helix PDBSELECT set

(xi, xi+1, xi+2) 2.71 2.75 (0.12)

(xi, xi+1, xi+3) 2.84 2.88 (0.28)

(xi, xi+2, xi+3) 2.84 2.88 (0.28)

Table 1. Three-body radii (
◦
A) of selected triplets of α-carbons in the perfect helix

and in a set of 3639 proteins from PDBSELECT. Mean and standard deviation (in
brackets) of radius values are reported for the PDBSELECT triplets.

Taking into account the previous analysis, we set D̄ = 2.70 and ε = 0.20,
i.e. [∆− ε, ∆ + ε] = [2.50, 2.90]. This value of D̄ is very close to the thickness

of the perfect helix (2.71
◦
A); furthermore, the interval [2.50, 2.90] contains

most of the thickness values of the α-helices from PDBSELECT and includes
also the most frequent three-body radii of both the perfect helix and the
PDBSELECT α-helices.

The semiaxis lengths a, b and c that define the function g have been
determined taking into account the volumes of the single amino acids, that
are reported in Table 9. For each protein chain, we computed the sum of the
volumes of the amino acids, then we increased this sum by 3.8%, to take into
account that proteins have cavities [75], and, finally, we set a, b and c in such
a way that their products was equal to the cube of the radius s of the sphere
with volume equal to the increased sum of amino acid volumes, i.e.

a · b · c = s3, (10)

where

s =
3
4π

3

√√√√1.038 ·
n∑

i=1

voli (11)

and voli is the volume of the i-th amino acid in the protein chain. Obviously,
the single values of a, b and c are not univocally determined by (10)-(11);
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by varying these values, theoretically possible conformations with different
shapes can be obtained. Note that, by taking into account the amino acid
volumes, we introduce in the model a distinction among the points xi, that
are considered equal in the original tube model.

amino acid volume amino acid volume

ALA 88.6 LEU 166.7

ARG 173.4 LYS 168.7

ASP 111.1 MET 162.9

ASN 114.1 PHE 189.9

CYS 108.5 PRO 112.7

GLU 138.4 SER 89.0

GLN 143.8 THR 116.1

GLY 60.1 TRP 227.8

HIS 153.2 TYR 193.6

ILE 166.7 VAL 140.0

Table 2. The volumes of the 20 amino acids, in
◦
A

3

.

To determine the constants c1 and c2, the mean value of the Euclidean
distances of all pairs of consecutive α-carbons has been computed for each
protein of the PDBSELECT set (the corresponding frequency distribution is
shown in Figure 9). However, since the algorithm applied to problem (1)-(9) in
our numerical experiments does not change these distances (see Section 10.1),
we set c1 and c2 both equal to the most frequent mean Euclidean distance,

i.e. c1 = c2 = 3.81
◦
A.

The remaining constants c3, c4 and c5 have been chosen by observing the
perfect helix. In this helix, the Euclidean distance between two α-carbons xi

and xi+2 is 5.43
◦
A, hence we set c4 = 5.0 and c5 = 6.0. Similar observations

on the minimum distance between two generic α-carbons led to the choice
c3 = c4. Actually, these choices of the ci constants have been supported by
numerical experiments.

10 Computational Experiments

Computational experiments based on the modified tube model have been car-
ried out to simulate α-helices and an all-α protein, using a Metropolis Monte
Carlo Simulated Annealing algorithm to search the conformational space. This
algorithm has been implemented in Fortran 77 and in C and the software has
been run on a personal computer with a 2 GHz Athlon processor and a 516
MBytes RAM, under the Linux operating system.



Computational Methods for Protein Fold Prediction 417

Fig. 9. Frequency distribution of the mean Euclidean distances of the pairs of
consecutive amino acids in the proteins of the PDBSELECT set.

A short description of the Simulated Annealing algorithm and a discussion
on the results of the computational experiments follow.

10.1 The Metropolis Monte Carlo Simulated Annealing Algorithm

As observed in Section 5, Simulated Annealing (SA) algorithms [40, 52] are
based on an analogy with the annealing physical process, in which the tem-
perature of a given system is decreased slowly, in order to obtain a crystalline
structure. The structure of a SA algorithm can be described by two nested
loops. The inner one generates at each iteration a new candidate approxima-
tion to the solution, by applying Monte Carlo perturbations to the previous
one. The new approximation is accepted or rejected, by using a random mech-
anism based on the evaluation of the so-called Metropolis acceptance func-
tion, whose value depends on a parameter called temperature. The lower is
the temperature, the smaller is the number of accepted approximations. The
outer loop controls the decrease of the temperature parameter, i.e. defines the
so-called cooling schedule.

From the above description it results that SA algorithms are built up from
three basic components: next candidate generation, acceptance strategy and
cooling schedule.

To generate the next candidate approximation to the solution, we use
operations called Monte Carlo moves [88]. In particular, we consider the pivot,
multipivot and crankshaft moves. The pivot move randomly selects a pivot
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point xi, with 1 < i < n and two coordinate axes ξ and η, and then rotates
each point xk, with i < k ≤ n, of a random angle with respect to the axis
through xi and orthogonal to ξ and η. The multipivot move is obtained by
performing a sequence of pivot moves. In our case, n/10 points xi, with 1 <
i < n, are randomly selected and used as pivots. Finally, the crankshaft move
randomly selects two points xi and xj , with 1 ≤ i < j − 1 < n, and then
rotates the points xk, with i < k < j, of a random angle around the axis
passing through xi and xj .

The acceptance strategy used in our experiments is based on the well-
known Metropolis acceptance function [55]. If X(k) is the approximation of
the solution at a step k and X̄ is a candidate approximation obtained by a
Monte Carlo move, then X̄ is accepted if

A(X(k), X̄, t(k)) = min
{

1, e
F (X̄)−F (X(k))

t(k)

}
> p,

where F is the objective function to be maximized (see (1)), t(k) is the temper-
ature value at step k and p is a random number from the uniform distribution
in (0, 1). The candidate approximation can be accepted even if it does not
increase the value of F , depending on t(k) and p. At high temperatures, many
candidate approximations can be accepted, but, as the temperature decreases,
the number of candidate approximations decreases, in analogy with the phys-
ical process of annealing.

The cooling strategy has an important role in SA. The temperature must
be decreased very slowly to avoid trapping into local optima that are far
from the global one. This reflects the behaviour of the physical annealing, in
which a fast temperature decrease leads to a polycrystalline or amorphous
state. In our experiments, a fixed number nsteps of Metropolis Monte Carlo
iterations is performed at constant temperature and then the temperature
value is decreased by a fixed factor γ < 1. The values of nsteps and γ have
been experimentally set to 103n and 0.99, respectively.

Our algorithm terminates when the value of the objective function F has
not been changed for ten outer iterations, or a maximum number of outer
iterations, maxout, is achieved. We set maxout = 300, but this value was
never reached in our experiments. A sketch of the whole algorithm is provided
in Figure 10.1.

We note that the cost of evaluating the term f in the objective function F
(see (1) and (2)-(3)) is usually lower than O(n3). Indeed, if two points have
a Euclidean distance greater than 2(D̄ + ε), then all the triplets containing
these points have a three-body radius greater than D̄+ε (in a circle, a chord is
smaller than the diameter) and hence they do not give any contribution to f .
Therefore, once the Euclidean distances of all the pairs of points are computed,
as required by the constraints (8), the three-body radii are computed only for
triplets such that the Euclidean distance of all the pairs in the triplet is not
greater than 2(D̄ + ε).
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t = t0
X = random conformation satisfying the constraints

nout = 0

{outer loop}
while ( F (X) not settled down and nout ≤ maxout )

nout = nout + 1

{inner loop}
for k = 1, nsteps

X(k) = random MC move on X

if ( X(k) satisfies the constraints ) then

p = uniform random number in (0,1)

if ( A(X, X(k), t)) > p ) then

X = X(k)

endif

endif

endfor

t = γ · t
endwhile

Fig. 10. Metropolis Monte Carlo Simulated Annealing algorithm.

10.2 Simulation of α-helices

First experiments have been performed with very short amino acid chains and
with the objective function of the original tube model, i.e. without considering
the compactness term g(X) in the objective function F (X) (see (1)).

Many simulations have been carried out with n = 10 amino acids, starting
from different initial conformations. All the computed optimal conformations
are clock-wise rotated helices with about 3.6 points per helix turn, as in the
real α-helices. About 60% of these conformations differ each other by a RMSD

value of about 0.5
◦
A; a maximum RMSD of 2.0

◦
A has been observed. The

value of the objective function at the solution is always equal to 22 and is
due to all the triplets (xi, xi+1, xi+2), (xi, xi+1, xi+3) and (xi, xi+2, xi+3) (8,
7 and 7 triplets, respectively), which have a tree-body radius ranging between

D̄− ε and D̄ + ε, where D̄ = 2.70
◦
A and ε = 0.20

◦
A, as discussed in Section 9.

Each simulation was completed in about 7 seconds. An example of computed
optimal conformation is shown in Figure 10.2.

Other experiments have been performed by changing the value of D̄, but
keeping ε = 0.20. In this case, the computed conformations are unrealistic
helices, with less than 3.6 points per turn if D̄ < 2.70 and more than 3.6 if
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Fig. 11. Two views of a computed optimal conformation with n = 10 points„
D̄ = 2.70

◦
A

«
.

D̄ > 2.70. These results support the choice D̄ = 2.70. Some conformations
obtained with different values of D̄ are shown in Figure 10.2.

Fig. 12. Conformations obtained with n = 10 and different values of D̄
((a) D̄ = 2.60, (b) D̄ = 2.80, (c) D̄ = 2.90, (d) D̄ = 3.20).

Further experiments with n > 10 led to similar results. When D̄ = 2.70,
conformations very close to real α-helices are obtained, while unrealistic he-



Computational Methods for Protein Fold Prediction 421

lices are generated for D̄ 6= 2.70. Furthermore, for n > 30, single long helices
are computed which do not exist in nature, hence the need of introducing a
compactness term into the problem objective function.

10.3 Simulation of All-α Proteins

Some experiments have been devoted to generate all-α protein conformations.
A globular protein composed of 153 amino acid residues, the sperm whale
myoglobin (PDB code 1mbn), has been chosen as reference protein. Obviously,
we did not expect to generate conformations very close to the myoglobin
one, since the information contained in the considered model is too poor for
an accurate fold prediction. On the other hand, we wished to analyze the
reliability and accuracy provided by such a simplified model.

The lengths of the ellipsoid semiaxes a, b and c have been computed using
the amino acid volumes of the selected protein, as explained in Section 9.
According to the whole myoglobin shape, the following lengths have been
considered: a = b = 1.15s and c = 0.76s, where s is radius of the sphere
with volume equal to the sum of the amino acid volumes, increased by 3.8%

(see (11)), i.e. s = 17.32
◦
A. A few experiments with different semiaxis lengths

have been also performed to analyze the weight of the compactness term g(X)
with respect to the thickness term f(X) in the objective function F (X). Sixty
simulations have been performed until now, each requiring an execution time
of about two hours. Better simulated conformations could be obtained by
running a larger number of experiments.

The results obtained so far show that, as a, b and c get closer, the value
of the term f(X) at the solution decreases. A minimum value of 300 has
been achieved with a = b = c. On the other hand, as the difference between
two semiaxes increases, and hence the formation of longer helices is allowed,
the value of f(X) at the solution usually increases; f(X) = 360 has been
obtained for a = b = 1.2s and c = 0.7s. Conformations with values of g(X)
varying between 100 and 153 have been obtained, where larger values of g(X)
correspond to smaller values of f(X).

Like the all-α proteins, the computed conformations are globular ob-
jects with secondary structures that are very close to real α-helices. For
a = b = 1.15s and c = 0.76s, i.e. for semiaxis lengths corresponding to the
myoglobin shape, we obtained two conformations that have 66.7 and 59.5 iden-
tity percentages of secondary structures with respect to the reference protein.
If we consider only the α-helices, the identity percentages are 67.8 and 51.6, re-
spectively. This is shown in Figure 10.3. The corresponding three-dimensional
representations are given in Figure 10.3. On the other hand, while having a
certain similarity, the real protein and the computed conformations can have
different numbers of helices, with different lengths and orientations, thus indi-
cating that more information must be included in the model to perform more
accurate simulations.
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Fig. 13. A comparison of the sperm whale myoglobin with two simulated confor-
mations. First row: amino acid sequence of the sperm whale myoglobin; second row:
myoglobin amino acid residues that are contained into α-helices in the original con-
formation; third and fourth row: myoglobin amino acid residues that are contained
into helices in the two simulated conformations. The identity percentage is 66.7 for
the conformation called test1 and 59.5 for the one called test2.

Fig. 14. Conformations obtained from the sperm whale myoglobin protein chain
(a = b = 1.15s and c = 0.76s). The α-helices are lighter, all the other structures are
darker.
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11 Conclusions

The great interest in the solution of the protein folding problem strongly
pushes the research activity in this area. However, despite the many efforts
performed so far, this problem is still considered a big challenge in science.

In this chapter we focused on ab-initio computational methods for protein
fold predictions that are potentially able to discover unknown native state con-
formations. In this context, we analyzed an interesting topological approach,
that takes into account geometrical rather than physicochemical protein fea-
tures. This approach is based on a very simplified model that represents the
polymer chain as a non-intersecting tube of nonzero thickness, by explicitly
considering only the Cα trace of the protein and describing the amino acid
interactions through the use of a suitable metric that measures the “distance”
among any three Cα atoms. This model leads to the formulation of a global
constrained optimization problem.

To enhance compactness and globularity in the computed conformations,
we introduced a modification into the above model, and presented a methodol-
ogy for choosing the values of characterstic parameters. The results of compu-
tational experiments devoted to simulating α-helices and all-α proteins can be
considered “promising”, especially if we take into account the great simplicity
and the relatively low computational cost of the model. Indeed, simulations
performed using the sperm whale myoglobin as target protein, generated a
conformation with a percentage identity equal to 66.7. Hence, we expect that
the model can be significantly improved by adding some physicochemical fea-
tures to the geometrical ones currently considered. The introduction of the
amino acid hydrophobicity into the model and the definition of ad hoc con-
straints and suitable parameter values for the simulation of β-strands and
β-sheets are currently under investigation.
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74. D.R. Ripoll, M.J. Vàsquez, and H.A. Scheraga. The electrostatically
driven Monte Carlo method - Application to conformational analysis of
decaglycine. Biopolymers, 31: 319-330, 1991.

75. K. Rother, R. Preissner, A. Goede, and C. Frommel. Inhomogeneous
molecular density: reference packing densities and distribution of cavities
within proteins. Bioinformatics, 19(16): 2112-2121, 2003.

76. I. Ruczinski, C. Kooperberg, R. Bonneau and D. Baker. Distributions of
Beta Sheets in Proteins With Application to Structure Prediction. Pro-
teins: Structure, Function and Genetics, 48: 85-97, 2002.

77. R. Samudrala, Y. Xia, E. Huang, and M. Levitt. Ab initio Protein
Structure Prediction Using a Combined Hierarchical Approach. Proteins:
Structure, Function and Genetics Supplement, 3: 194-198, 1999.

78. J.A. Saunders, K.D. Gibson, and H.A. Scheraga. Ab initio folding of
multiple-chain proteins. Pacific Symposium on Biocomputing, 7: 601-612,
2002.

79. G. Scapigliati, S. Costantini, G. Colonna, A. Facchiano, F. Buonocore, P.
Boss, J.W. Holland, and C.J. Secombes. Modelling of fish interleukin 1
and its receptor. Developmental and Comparative Immunology, 28: 429-41,
2004.

80. G. Settanni, A. Cattaneo, and A. Maritan. Role of Native-State Topology
in the Stabilitazion of Intracellular Antibodies. Biophysical Journal, 81:
2935-2945, 2001.

81. K.T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of Pro-
tein Tertiary Structures from Fragments with Similar Local Sequences
using Simulated Annealing and Bayesian Scoring Function. Journal of
Molecular Biology, 268: 209-225, 1997.

82. K.T. Simons, R. Bonneau, I. Ruczinski, and D. Baker. Ab Initio Protein
Structure Predictions of CASP III Targets Using ROSETTA. Proteins:
Structure, Function and Genetics Supplement, 3: 171-176, 1999.

83. J. Skolnick, A. Kolinski, D. Kihara, M. Betancourt, P. Rotkiewicz, and
M. Boniecki. Ab initio protein structure prediction via a combination of
threading, lattice folding, clustering, and structure refinement. Proteins:
Structure, Function and Genetics Supplement, 5: 149-156, 2001.



Computational Methods for Protein Fold Prediction 429

84. J. Skolnick, D. Kihara, H. Lu, and A. Kolinski. TOUCHSTONE: An ab
initio protein structure prediction method that uses threading-based ter-
tiary restraints. Proceedings of the National Academy of Sciences, 98(18):
10125-10130, 2001.

85. J. Skolnick, D. Kihara, Y. Zhang, H. Lu, and A. Kolinski. Ab initio protein
structure prediction on a genomic scale: Application to the Mycoplasma
genitalium genome. Proceedings of the National Academy of Sciences,
99(9), 5993-5998, 2002.

86. J. Skolnick, Y. Zhang, A.K. Arakaki, A. Kolinski, M. Boniecki, A. Szilágyi,
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