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Abstract—The Molecular Distance Geometry Problem consists distances, will be represented by intervals of rational bers
in finding the three-dimensional conformation of a protein wsing  and the possible values will be represented by a discretized
some of the distances between its atoms provided by experimis set of values within this interval

of Nuclear Magnetic Resonance. This is a continuous search | L th uti f the MDGP . fi
problem that can be discretized under some assumptions on ¢h n general, the solution ot the requires a continuous

known distances. We discuss the case where some of the distas  S€arch [10]. In this paper, we discretize the problem and we
are subject to uncertainty within a given nonnegative intewval. propose an extension of the Branch-and-Prune (BP) algarith

We show that a discretization is still possible and proposera given in [9], in order to consider uncertainties on the given
algorithm to solve the problem. Computational experimentson  gistances. The distances from NMR are only used for pruning
a set of artificially generated instances are presented. . .
purposes. As a consequence, the new discrete domain of the
problem is completely independent from the instance to be
solved, and it cannot be spoiled by wrong data which might be
In this paper we consider the problem of finding the thregbtained experimentally. As already remarked in our presio
dimensional conformation (the coordinates of all the ajompublications, the advantages in considering a discretelsea
of a protein from a subset of inter-atomic distances fourwith respect to a continuous one, are: increased efficiency,
using Nuclear Magnetic Resonance (NMR) experiments. Thiftreased solution accuracy and completeness (in the sense
problem is usually referred to as ?MECULAR DISTANCE that all solutions can be found).
GEOMETRY PROBLEM (MDGP) [5], [10]. The discretization of the search space is based on the
Proteins are important molecules which perform severabservation that, in general, three sphere®intersect in
functions in living beings. If their three-dimensional dor at most two points. A technique for reliably computing such
mations are discovered, they are able to reveal the specifitersection points is given in [2].
function that each protein is supposed to perform. A web Our first attempt to consider NMR data, which usually pro-
database namedRBTEIN DATA BANK (PDB) [1] is collecting vide just distances between hydrogen atoms closer tharea giv
all the three-dimensional conformations of proteins tltédrs  threshold, has been presented in [6], [7], [12]. We defined
tists in the world have been able to obtain. To date, a large ordering for the hydrogens related to protein backbones
percentage of conformations on the PDB have been obtaineldich allows us to have information enough to perform the
through NMR experiments, where the corresponding MDGdRscretization. The black arrows and their labels in Figlre
has been solved by general-purpose continuous approamheskiow the particular considered ordering. In [8], we provet,t
global optimization. The meta-heuristic Simulated Anitegl because of steric constraints due to the particular streiafi
[3], [14] is employed in most of the cases. protein backbones, all the distances which are requirethfor
Since we focus our attention on proteins and on NMRiscretization are smaller thamd6 As a consequence, since
experiments for obtaining estimates of inter-atomic dises, NMR experiments are usually able to provide distances that
we are able to make the following assumptions, which wilire shorter than & all the necessary distances should be
allow us to discretize the problem: 1) Inter-atomic dis&sic available.
corresponding to the set of all (unordered) pairs of atomsEven though we showed that this approach works on a set
separated by at most two covalent bonds will be representedartificially generated instances, we remarked its litrotes
by positive rational numbers which will be held fixed, sincevhen we tried to apply it to real NMR data. The main issue is
they can be considered fixed in the majority of the proteihat the distances obtained by NMR are not precise, and they
conformation calculations [15]; 2) The pairs of atoms sepaan be, in general, represented by intervals. As discussed i
rated by exactly three covalent bonds, for which it is pdssib[13], discretizing with interval data leads to the compiatabf
to compute tight lower and upper bounds to the corresponditigee spherical shells (instead of three spheres), whighite

I. INTRODUCTION



\ not used \Hp (not used)

Fig. 1. Note that some of the hydrogens are considered twidetteat the considered order is specified through the lalssisciated to the arrows.

complex to compute. We will introduce a different strategy ithere is no ambiguity we omit th&' index). For an ordek

this paper, which is, however, incompatible with the aitific on V' andv € V we lety.(v) = {u € V | u < v} be the set

backbone in Figure 1. of predecessors af in the order< and p< (v) = |y<(v)] +1
Our first attempt to consider interval data has been predenbe the rank ofv in the order< (if there is no ambiguity we

in [11]. We assumed that the distances provided by NM&nmit the < index).

experiments are defined by a lower and an upper bound)n [4], [9] we introduced a subclass of MDGP whose

and we modified the pruning phase of the BP algorithinstances can be solved using a discrete search algorithm.

from a “by value” form to a “by interval” form. However, DISCRETIZABLE MOLECULAR DISTANCE GEOM-
needed distances for the discretization were still supptse ETRY PROBLEM (DMDGP). Given a nonnegatively
be exact. We observed that even a very low uncertainty on weighted graptG = (V, E,d) whered : E — R,
these distances is able to spoil the discretization proaeds a subsel, C V and an order: on V' such that:

no solutions can be found.
In the present work, we remove the latter phenomenon. Even
though interval data are used, we will be able to mantain the

o« Vo =1{1,2,3} andG[Vy] is a clique (SART)
o forallv eV~ 1V, we have

discretization process. Also, we compute the positionsoofn — v=3,v=2,0-1 € 6(v)Nv(v) (DISCRETIZA-
hydrogen atoms by a different method, thereby avoiding the TION)

numerical instabilities due to solving linear systems,tagais - d(v=3,v-2)+d(v-2,v-1) > d(v-3,v-1)
done in [8]. The new algorithm relies on a carefully hand- (STRICT TRIANGULAR INEQUALITIES),

crafted atom sequence which exploits repetitions in order t is there an embedding: V' — R? such that
make sure that for each atom being placed there are distances

to three previously placed atoms, and that these distances Hu,v} € B z(u) — z(v)|| = d(u,v) (1)
guarantee that discretization can occur independenthhef t holds ?

presence of interval represented distances, and a particul ) i
instance of the MDGP. The vertices ofGG correspond to the atoms forming the

The rest of this paper is organized as follows. In Sect. folecule and edges indicate if the distance between the

we introduce notation, some main concepts, and give soffSPective atoms is known or not.

preliminary definitions. In Sect. Ill we construct the piote ~ The DMDGP isNP-hard [4] and its instances can be solved
backbone graph and a vertex sequence that allows the &ging the BP algorithm [9]: the first 3 vertices W} can
cretization of the search space. In Sect. IV we propose tAg €émbedded by BRT; inductively, any vertexv of rank
algorithm for the protein backbone graph using the order gf€ater than 3 can be placed at the intersection of threeesphe
the vertex sequence and present some computational resgGRgtered ab—3, v —2,v—1 with respective radiil(v — 3, v),

Sect. V concludes the paper. d(v—2,v), d(v—1,v) by DISCRETIZATION, this intersection
consists of at most 2 points,, 2!/ by STRICT TRIANGULAR
Il. THE DISCRETIZABLE MOLECULAR DISTANCE INEQUALITIES. This gives rise to a binary tree search whose
GEOMETRY PROBLEM leaves represent valid embeddings @f Branches can be
For a graphz = (V. E) and a subset, C V we letG[V;]  pruned using distances fromto vertices ind(v) N~y (v) (other
be the subgraph aF induced byVy; forv € V we letég(v) = than the ones used for the discretization) that are incabipat

{u € V| {u,v} € E} be the set of vertices adjacent#o(if with eitherz or z/, or both. This yields an extremely fast



Fig. 2. A graph representing the general structure of a prddeckbone. Dashed lines show some distances which neegl itepbesented by intervals.

algorithm [9] which is also able to find all embeddings for ahows the ordering for the last amino acid. We remark that
given graph (modulo rotations and translations). since O! has known precise distances t62,C?, O? its

In order to facilitate our task, we allow for repeated atoms iplacement is not problematic.
the ordering that we will define in the next section. Thiskric L
allows us to consider distances between copies of the same H,
atom, that are naturally equal to 0, thus increasing the mumb H' ‘6 to 1{2
of exact distances that can be considered. Obviously, shece ’
same atom can be duplicated several times, the final sequence INY
of atoms could have a length which is much larger than the ““_ First vertex
original sequence of atoms. However, this increase in kengt
is not reflected on the tree obtained by the discretization,
because copies of an atom which has been already placed
somewhere can only take one position. In other words, there
is no branching on the tree in correspondence with duplicate A
atoms. ‘ H,

% to Hi+1

1. AN ARTIFICIAL ORDER FOR PROTEIN BACKBONES 1\ from %Z \ \ ‘9

Figure 2 shows the general structure of a protein backbone, Ni O s mci“
where superscripts indicate the amino acid to which eaah ato '
belongs.H? is the second hydrogen that is bond to the first
nitrogenN'': this is the only case in which two hydrogens are
bound to the same atoni/; belongs to the last amino acid,
and it is bound to the second oxygéR.

The atoms of the protein backbone can be ordered into
a natural way. For example, if the following ordering is
considered (see Figure 2):

{H°, H', N', CL, H}, C', ..., H', N', C, HL, C', ...,
pr pr Cg! Hg! pr Ola 02’ Hf}’

Tl 10

(s N2 902

[0}

Fig. 4. A sequence’ (foric {2,...,p— 1}).

then it is easy to verify that the assumptions for the dis&zaet
tion are not satisfied. However, we discovered a particular

ordering for these atoms which allows us to discretize efen i Fig. 5. The sequence’.
interval data are considered.
First we define the finite sequence (see Fig. 3): Thus, the sequence which defines a complete ordering for

all the atoms of the protein backbone is:
rt = (N', H' H, C} N B, CL Ot N2 C?), P
rpp = (Tl,TQ, . ,rpfl,rp).
related to the first amino acid of the protein backbone. Then,
for a giveni € {2,...,p — 1}, we define the finite sequence We point out that the defined ordering allows to discretize

(see Fig. 4): MDGPs where NMR data are supposed to be represented
; i i i i i i i il by a set of intervals on the distances. Indeed, among the
rt=(H'N',C,, Hg,C*,Cg, N, C", CT), distances needed for the discretization, the distafices- 1)

related to the generic amino acid of the protein backborfd!d (i@ + 2) are always exact, because they are computed a
Finally, the finite sequence (see Fig. 5): priori by exploiting information on bond lenghts and angles
' T Only distancegi, i +3) can be represented by intervals (they

rP = (HP, NP ,C?, H?,C?,C?, 0%, CP, Hy), are marked by dashed lines in Figure 2). When this is the case,



the discretization process could be performed by computing
the intersection of two spheres (related to exact distgnces
and a spherical shell (related to the interval). This proced
would be able to define a curve in the three-dimensional space {
in which the possible positions for the current atom can be
searched. However, the equation of the curve would provide
information on the atomic positions with a precision which
is actually not needed for the purposes of the computation.
Therefore, we discretize the interval related to the digtan
(i,7 + 3) and apply the standard discretization process for
a subset of sample distances extracted from the available
interval.

IV. COMPUTATIONAL RESULTS

We consider a very simple instance with 3 amino acids and
a subset of instances with a larger number of amino acids. For

the small instance containing only 3 amino acids, we analyze Fig. 6. A generated test instance with 3 amino acids.
in details the defined ordering-5, given by
— Nl Hl HO 1 Nl Hl 1 1 N2 2 ) ) ) ]
're ( ) ’ ) ’ ) ’02"" ) ’ QQ’C;C”(’; ’ 5 G the distance between this atom and the previdlisis an
H* N*,C5, HG,, C7,C5, N°, C%, C, interval, we need to discretize the interval and take from it
H3 N3 C3 H2 0% C3 0% C3 Hy). certain number of sample distances, which will be consitlere

WS exact. Let us denote iy the number of considered sample
distances. As a consequen2e, D branches are added at level
need a distance between two bound atoms, we always consﬁjé)rn the binary tree. At Iev_el 7, we ﬂnd_ another duphcated
the same valuel;, independently from the kinds of atoms.atom’ and therefore, there is no branching. After this atom,
y have a sequence of 3 atoms that are neither duplicated nor

Moreover, every time a distance between two atoms bound ) ) )
a common atom is needed, the valiseis always considered. ydrogens: depending on the fact that an interval needs to be
' 'zcretized or not, only two 02 x D branches are added to

In order to keep a very high control on this first experimerg,
consider only 3 different distances. In practice, everetiwve

Finally, when the distance between two atoms separated ree

three chemical bonds is required, we consider the inter\} ) ) o
[15, u3], wherel; is the minimum possible value and is the The first hydrogen of the second amino acid is at level 11.

maximum value for the distance. The same values are repeatife the distance betweért and H? is known a priori, we
along the whole sequence. have_ only two branches. The other cases are similar to the
The distances!; and dy, as well as the intervalls, us], Previous ones.
provide the information which is needed for computing the Table | provides the number of branches on each layer of
discrete search domain. The associated tree containseall ite tree. We consider here the generated instance in Fig. 6,
possible solutions related to protein backbones of the saMigerec = 0.30 and D = 6. In particular, the last but one
length, independently from any particular protein. We genecolumn of the table shows the number of branches of the
ated our first test instance by choosing randomly one of tfe Idull tree, in which no kinds of prunings are applied. The last
nodes (solutions) on this tree. We then constructed itsethr&olumn, instead, shows how we can prune by exploiting the
dimensional conformation, and we computed the distancéistances between hydrogen atoms that have been artyficiall
between all its hydrogens. For all the distancesmaller generated as explained above. It is easy to identify in the
than 5, we created an intervall — ¢, d + ¢] containing the table the three different situations that we can have. When
computed distance, and we added it to our set of distanéds atom is duplicated (see for example theat level 5),
that will be used for pruning. Fig. 6 shows the generated t¢¥® branches are added to the tree. When the atom is not
instance. duplicated and all the distances for the discretizatioreaset
The positions of the first three atoms can be obtained ksee for example the€’ at level 8), we introduce two new
using the known information on the bond lengths and bofanches. Finally, when the atom is not duplicated and an
angles. The branching starts at level 4, in corresponden@terval needs to be discretized (see for example fiheat
with the atomC., (see Table 1). At level 5 we have the firstevel 6),24 = 2 x (2 x D) branches are added to the tree.
duplicated atom, the nitrogeN'! which already appeared atWithout pruning, the tree reaches 9172942848 branches at
level 1. Therefore, we have no branching, because the nigvel 28.
copy of N! can only be placed in the same position of its In the last column of Table | we can see the effect of the
previous copy. pruning phase. Every time we consider a hydrogen, there is a
The first hydrogen in the vertex ordering on which we neegbod chance to have a distance that regards this hydrogen.
to branch appears at level 6. This is the hydrogen Since This distance (represented by an interval) can be used for



layer | atom | duplicated? | w/out pruning | with pruning 0: branch-and-pruné(n, d, nbranches)
% g no i i if (z; is a duplicated atomthen
3 H 28 1 1 assign tox; the same coordinates of its previous copy;
4 C. no 2 2 branch-and-pruné¢ 1,n,d,nbranches);
5 N yes 2 2 else
6 | Ha no 24 18 if (d(i —3,i) is exact)then
7 Ca yes 24 18 h—2
8 c no 48 36 ’
9 | N no 576 360 else
10 | Ca no 1152 720 b = nbranches;
11 H no 2304 10 end if
12 | N yes 2304 10 for (k = 1,0) do
13 ] Ca yes 2304 10 compute thek!” atomic position for the?" atom: z*;
14 | H, no 27648 70 - . L G
15 | ¢ no 55206 140 f:heck_the fez_;15|b|I|ty of the atomic posmmf.
16 | C, yes 55296 140 if (z¥ is feasible)then
17 N no 663552 1400 if (i =n) then
18 | C yes 663552 1400 a solution is found,;
19 Co no 1327104 2800 else
20 H no 2654208 4 . .
21 N yes 2654208 4 branCh-and-pI’UﬂeG— 1,”,d,nb'f‘anch€8),
22 | C, yes 2654208 4 end if
23 H, no 31850496 9 else
24 | C no 63700992 18 the current branch is pruned;
25 Co yes 63700992 18 end if
26 O no 764411904 52
27 | C yes 764411904 52 end for
28 | H no 9172942848 10 end if

TABLE |
THE NUMBER OF BRWAFTiHAEjDS\LT:HBOYUS;TPEFf’fNFlJSF PISCRETEDOMAIN o is the total number of amino acids, is the total number
(including the repetitions) of considered atoms &adl is the
number of distances which are available (exact distancds an
intervals). We only require one solution, and therefore |1#So
pruning away all the branches containing infeasible sohsti is always 1. Finally, the CPU time increases to almost half
We prune, for example, at level 11 when considering tten hour when the largest instance (with 1000 amino acids)
hydrogenH of the second amino acid. In the previous layes considered. We point out that the experiments have been
of the tree, 720 branches are contained. At level 11, tvgerformed on an Intel Core 2 CPU 6400 @ 2.13 GHz with
branches are added to the ones of the previous layer. Ad@B RAM, running Linux.
consequence, 1440 branches are considered in total, but onl
10 branches pass the pruning test. Similarly, at level 142D
28, the pruning phase allows to drastically reduce the nmmk_JeIn this paper, we defined an artificial ordering for dis-
of branches. The prur_led tree has only 10 Ieaf_ nodes, Wh'&létizing MDGPs with interval data. This ordering allowed
represent the 1(.) solutions rglated to our small 'T‘Stance- . us to solve two issues which arose while working on other
Algorithm 1V IS an extensmp Of, thg BP algor'thm'_prev"discretization approaches. First, we are now able to censid
ously_ pro_posed in [9], fqr cons_|der|ng interval _data. It & . interval data provided by NMR experiments. Secondly, we are
rally _|mpI|ed fr_om the discussion "?‘bo"e_- Our |mple_zmenllat|onow able to consider the hydrogens of the protein backbones
of th!s extension of the BP al_gorlthm IS _able to find the 1R)getherwith the other backbone atoms, which allows todavoi
solu'uons. for the instance detailed above in less than 1m’bcqhe numerical instabilities of the previously proposedrapph
of CPU time. i L 81, based on the solution of a sequence of linear systems.
We also performed some experiments by considering Iarg;e
instances. The procedure which has been employed for gen-
erating such instances is exactly the same as before, wéth th [ maa | n | [E] | #Sol] time |
only difference that the ordering for the generic amino acid 10 91 716 1 [01s
(see Figure 4) is repeated as many times as needed. Naturally 100 | 901 | 7556 | 1 | 06s
these instances do not represent well real protein baclsbone 1000 | 9001 | 75956 1 |27 m

V. CONCLUSION

for the general shape they have, but they are still usefuhier TABLE Il
purposes of the experiments. The experiments (see Table $Que experIMENTS WITH LARGER INSTANCESONLY ONE SOLUTION IS
showed that the discretization with interval data can also b REQUIRED.

applied to instances having a larger dimension. In the table
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