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Abstract—The Molecular Distance Geometry Problem consists
in finding the three-dimensional conformation of a protein using
some of the distances between its atoms provided by experiments
of Nuclear Magnetic Resonance. This is a continuous search
problem that can be discretized under some assumptions on the
known distances. We discuss the case where some of the distances
are subject to uncertainty within a given nonnegative interval.
We show that a discretization is still possible and propose an
algorithm to solve the problem. Computational experimentson
a set of artificially generated instances are presented.

I. I NTRODUCTION

In this paper we consider the problem of finding the three-
dimensional conformation (the coordinates of all the atoms)
of a protein from a subset of inter-atomic distances found
using Nuclear Magnetic Resonance (NMR) experiments. This
problem is usually referred to as MOLECULAR DISTANCE

GEOMETRY PROBLEM (MDGP) [5], [10].
Proteins are important molecules which perform several

functions in living beings. If their three-dimensional confor-
mations are discovered, they are able to reveal the specific
function that each protein is supposed to perform. A web
database named PROTEIN DATA BANK (PDB) [1] is collecting
all the three-dimensional conformations of proteins that scien-
tists in the world have been able to obtain. To date, a large
percentage of conformations on the PDB have been obtained
through NMR experiments, where the corresponding MDGP
has been solved by general-purpose continuous approaches for
global optimization. The meta-heuristic Simulated Annealing
[3], [14] is employed in most of the cases.

Since we focus our attention on proteins and on NMR
experiments for obtaining estimates of inter-atomic distances,
we are able to make the following assumptions, which will
allow us to discretize the problem: 1) Inter-atomic distances
corresponding to the set of all (unordered) pairs of atoms
separated by at most two covalent bonds will be represented
by positive rational numbers which will be held fixed, since
they can be considered fixed in the majority of the protein
conformation calculations [15]; 2) The pairs of atoms sepa-
rated by exactly three covalent bonds, for which it is possible
to compute tight lower and upper bounds to the corresponding

distances, will be represented by intervals of rational numbers
and the possible values will be represented by a discretized
set of values within this interval.

In general, the solution of the MDGP requires a continuous
search [10]. In this paper, we discretize the problem and we
propose an extension of the Branch-and-Prune (BP) algorithm,
given in [9], in order to consider uncertainties on the given
distances. The distances from NMR are only used for pruning
purposes. As a consequence, the new discrete domain of the
problem is completely independent from the instance to be
solved, and it cannot be spoiled by wrong data which might be
obtained experimentally. As already remarked in our previous
publications, the advantages in considering a discrete search,
with respect to a continuous one, are: increased efficiency,
increased solution accuracy and completeness (in the sense
that all solutions can be found).

The discretization of the search space is based on the
observation that, in general, three spheres inR

3 intersect in
at most two points. A technique for reliably computing such
intersection points is given in [2].

Our first attempt to consider NMR data, which usually pro-
vide just distances between hydrogen atoms closer than a given
threshold, has been presented in [6], [7], [12]. We defined
an ordering for the hydrogens related to protein backbones
which allows us to have information enough to perform the
discretization. The black arrows and their labels in Figure1
show the particular considered ordering. In [8], we proved that,
because of steric constraints due to the particular structure of
protein backbones, all the distances which are required forthe
discretization are smaller than 6Å. As a consequence, since
NMR experiments are usually able to provide distances that
are shorter than 6̊A, all the necessary distances should be
available.

Even though we showed that this approach works on a set
of artificially generated instances, we remarked its limitations
when we tried to apply it to real NMR data. The main issue is
that the distances obtained by NMR are not precise, and they
can be, in general, represented by intervals. As discussed in
[13], discretizing with interval data leads to the computation of
three spherical shells (instead of three spheres), which isquite



Fig. 1. Note that some of the hydrogens are considered twice and that the considered order is specified through the labels associated to the arrows.

complex to compute. We will introduce a different strategy in
this paper, which is, however, incompatible with the artificial
backbone in Figure 1.

Our first attempt to consider interval data has been presented
in [11]. We assumed that the distances provided by NMR
experiments are defined by a lower and an upper bound,
and we modified the pruning phase of the BP algorithm
from a “by value” form to a “by interval” form. However,
needed distances for the discretization were still supposed to
be exact. We observed that even a very low uncertainty on
these distances is able to spoil the discretization processand
no solutions can be found.

In the present work, we remove the latter phenomenon. Even
though interval data are used, we will be able to mantain the
discretization process. Also, we compute the positions of non-
hydrogen atoms by a different method, thereby avoiding the
numerical instabilities due to solving linear systems, as it was
done in [8]. The new algorithm relies on a carefully hand-
crafted atom sequence which exploits repetitions in order to
make sure that for each atom being placed there are distances
to three previously placed atoms, and that these distances
guarantee that discretization can occur independently of the
presence of interval represented distances, and a particular
instance of the MDGP.

The rest of this paper is organized as follows. In Sect. II
we introduce notation, some main concepts, and give some
preliminary definitions. In Sect. III we construct the protein
backbone graph and a vertex sequence that allows the dis-
cretization of the search space. In Sect. IV we propose the
algorithm for the protein backbone graph using the order in
the vertex sequence and present some computational results.
Sect. V concludes the paper.

II. T HE DISCRETIZABLE MOLECULAR DISTANCE

GEOMETRY PROBLEM

For a graphG = (V, E) and a subsetV0 ⊆ V we let G[V0]
be the subgraph ofG induced byV0; for v ∈ V we letδE(v) =
{u ∈ V | {u, v} ∈ E} be the set of vertices adjacent tov (if

there is no ambiguity we omit theE index). For an order<
on V andv ∈ V we let γ<(v) = {u ∈ V | u < v} be the set
of predecessors ofv in the order< andρ<(v) = |γ<(v)|+ 1
be the rank ofv in the order< (if there is no ambiguity we
omit the< index).

In [4], [9] we introduced a subclass of MDGP whose
instances can be solved using a discrete search algorithm.

DISCRETIZABLE MOLECULAR DISTANCE GEOM-
ETRY PROBLEM (DMDGP). Given a nonnegatively
weighted graphG = (V, E, d) whered : E → R+,
a subsetV0 ⊆ V and an order< on V such that:

• V0 = {1, 2, 3} andG[V0] is a clique (START)
• for all v ∈ V r V0 we have

– v−3, v−2, v−1 ∈ δ(v)∩γ(v) (DISCRETIZA-
TION)

– d(v−3, v−2)+d(v−2, v−1) > d(v−3, v−1)
(STRICT TRIANGULAR INEQUALITIES),

is there an embeddingx : V → R
3 such that

∀{u, v} ∈ E ‖x(u) − x(v)‖ = d(u, v) (1)

holds ?

The vertices ofG correspond to the atoms forming the
molecule and edges indicate if the distance between the
respective atoms is known or not.

The DMDGP isNP-hard [4] and its instances can be solved
using the BP algorithm [9]: the first 3 vertices inV0 can
be embedded by START; inductively, any vertexv of rank
greater than 3 can be placed at the intersection of three spheres
centered atv−3, v−2, v−1 with respective radiid(v−3, v),
d(v−2, v), d(v−1, v) by DISCRETIZATION; this intersection
consists of at most 2 pointsx′

v, x′′

v by STRICT TRIANGULAR

INEQUALITIES. This gives rise to a binary tree search whose
leaves represent valid embeddings ofG. Branches can be
pruned using distances fromv to vertices inδ(v)∩γ(v) (other
than the ones used for the discretization) that are incompatible
with either x′

v or x′′

v or both. This yields an extremely fast
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Fig. 2. A graph representing the general structure of a protein backbone. Dashed lines show some distances which need to be represented by intervals.

algorithm [9] which is also able to find all embeddings for a
given graph (modulo rotations and translations).

In order to facilitate our task, we allow for repeated atoms in
the ordering that we will define in the next section. This trick
allows us to consider distances between copies of the same
atom, that are naturally equal to 0, thus increasing the number
of exact distances that can be considered. Obviously, sincethe
same atom can be duplicated several times, the final sequence
of atoms could have a length which is much larger than the
original sequence of atoms. However, this increase in length
is not reflected on the tree obtained by the discretization,
because copies of an atom which has been already placed
somewhere can only take one position. In other words, there
is no branching on the tree in correspondence with duplicated
atoms.

III. A N ARTIFICIAL ORDER FOR PROTEIN BACKBONES

Figure 2 shows the general structure of a protein backbone,
where superscripts indicate the amino acid to which each atom
belongs.H0 is the second hydrogen that is bond to the first
nitrogenN1: this is the only case in which two hydrogens are
bound to the same atom.Hf belongs to the last amino acid,
and it is bound to the second oxygenO2.

The atoms of the protein backbone can be ordered into
a natural way. For example, if the following ordering is
considered (see Figure 2):

{H0, H1, N1, C1
α, H1

α, C1, . . . , Hi, N i, Ci
α, Hi

α, Ci, . . . ,
Hp, Np, Cp

α, Hp
α, Cp, O1, O2, Hf},

then it is easy to verify that the assumptions for the discretiza-
tion are not satisfied. However, we discovered a particular
ordering for these atoms which allows us to discretize even if
interval data are considered.

First we define the finite sequence (see Fig. 3):

r1 = (N1, H1, H0, C1
α, N1, H1

α, C1
α, C1, N2, C2

α),

related to the first amino acid of the protein backbone. Then,
for a giveni ∈ {2, . . . , p − 1}, we define the finite sequence
(see Fig. 4):

ri = (Hi, N i, Ci
α, Hi

α, Ci, Ci
α, N i+1, Ci, Ci+1

α ),

related to the generic amino acid of the protein backbone.
Finally, the finite sequence (see Fig. 5):

rp = (Hp, Np, Cp
α, Hp

α, Cp, Cp
α, O2, Cp, Hf ),

shows the ordering for the last amino acid. We remark that
since O1 has known precise distances toCp

α, Cp, O2 its
placement is not problematic.
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Thus, the sequence which defines a complete ordering for
all the atoms of the protein backbone is:

rPB = (r1, r2, . . . , rp−1, rp).

We point out that the defined ordering allows to discretize
MDGPs where NMR data are supposed to be represented
by a set of intervals on the distances. Indeed, among the
distances needed for the discretization, the distances(i, i+ 1)
and (i, i + 2) are always exact, because they are computed a
priori by exploiting information on bond lenghts and angles.
Only distances(i, i + 3) can be represented by intervals (they
are marked by dashed lines in Figure 2). When this is the case,



the discretization process could be performed by computing
the intersection of two spheres (related to exact distances)
and a spherical shell (related to the interval). This procedure
would be able to define a curve in the three-dimensional space
in which the possible positions for the current atom can be
searched. However, the equation of the curve would provide
information on the atomic positions with a precision which
is actually not needed for the purposes of the computation.
Therefore, we discretize the interval related to the distance
(i, i + 3) and apply the standard discretization process for
a subset of sample distances extracted from the available
interval.

IV. COMPUTATIONAL RESULTS

We consider a very simple instance with 3 amino acids and
a subset of instances with a larger number of amino acids. For
the small instance containing only 3 amino acids, we analyze
in details the defined orderingrPB , given by

rPB = (N1, H1, H0, C1
α, N1, H1

α, C1
α, C1, N2, C2

α,

H2, N2, C2
α, H2

α, C2, C2
α, N3, C2, C3

α,

H3, N3, C3
α, H3

α, C3, C3
α, O2, C3, Hf ).

In order to keep a very high control on this first experiment, we
consider only 3 different distances. In practice, every time we
need a distance between two bound atoms, we always consider
the same valued1, independently from the kinds of atoms.
Moreover, every time a distance between two atoms bound the
a common atom is needed, the valued2 is always considered.
Finally, when the distance between two atoms separated by
three chemical bonds is required, we consider the interval
[l3, u3], wherel3 is the minimum possible value andu3 is the
maximum value for the distance. The same values are repeated
along the whole sequence.

The distancesd1 and d2, as well as the interval[l3, u3],
provide the information which is needed for computing the
discrete search domain. The associated tree contains all the
possible solutions related to protein backbones of the same
length, independently from any particular protein. We gener-
ated our first test instance by choosing randomly one of the leaf
nodes (solutions) on this tree. We then constructed its three-
dimensional conformation, and we computed the distances
between all its hydrogens. For all the distancesd smaller
than 5Å, we created an interval[d − ε, d + ε] containing the
computed distance, and we added it to our set of distances
that will be used for pruning. Fig. 6 shows the generated test
instance.

The positions of the first three atoms can be obtained by
using the known information on the bond lengths and bond
angles. The branching starts at level 4, in correspondence
with the atomC1

α (see Table I). At level 5 we have the first
duplicated atom, the nitrogenN1 which already appeared at
level 1. Therefore, we have no branching, because the new
copy of N1 can only be placed in the same position of its
previous copy.

The first hydrogen in the vertex ordering on which we need
to branch appears at level 6. This is the hydrogenH1

α. Since

Fig. 6. A generated test instance with 3 amino acids.

the distance between this atom and the previousH1 is an
interval, we need to discretize the interval and take from ita
certain number of sample distances, which will be considered
as exact. Let us denote byD the number of considered sample
distances. As a consequence,2×D branches are added at level
6 on the binary tree. At level 7, we find another duplicated
atom, and therefore, there is no branching. After this atom,
we have a sequence of 3 atoms that are neither duplicated nor
hydrogens: depending on the fact that an interval needs to be
discretized or not, only two or2 × D branches are added to
the tree.

The first hydrogen of the second amino acid is at level 11.
Since the distance betweenC1 andH2 is known a priori, we
have only two branches. The other cases are similar to the
previous ones.

Table I provides the number of branches on each layer of
the tree. We consider here the generated instance in Fig. 6,
where ε = 0.30 and D = 6. In particular, the last but one
column of the table shows the number of branches of the
full tree, in which no kinds of prunings are applied. The last
column, instead, shows how we can prune by exploiting the
distances between hydrogen atoms that have been artificially
generated as explained above. It is easy to identify in the
table the three different situations that we can have. When
an atom is duplicated (see for example theN at level 5),
no branches are added to the tree. When the atom is not
duplicated and all the distances for the discretization areexact
(see for example theC at level 8), we introduce two new
branches. Finally, when the atom is not duplicated and an
interval needs to be discretized (see for example theHα at
level 6), 24 = 2 × (2 × D) branches are added to the tree.
Without pruning, the tree reaches 9172942848 branches at
level 28.

In the last column of Table I we can see the effect of the
pruning phase. Every time we consider a hydrogen, there is a
good chance to have a distance that regards this hydrogen.
This distance (represented by an interval) can be used for



layer atom duplicated? w/out pruning with pruning
1 N no 1 1
2 H no 1 1
3 H no 1 1
4 Cα no 2 2
5 N yes 2 2
6 Hα no 24 18
7 Cα yes 24 18
8 C no 48 36
9 N no 576 360
10 Cα no 1152 720
11 H no 2304 10
12 N yes 2304 10
13 Cα yes 2304 10
14 Hα no 27648 70
15 C no 55296 140
16 Cα yes 55296 140
17 N no 663552 1400
18 C yes 663552 1400
19 Cα no 1327104 2800
20 H no 2654208 4
21 N yes 2654208 4
22 Cα yes 2654208 4
23 Hα no 31850496 9
24 C no 63700992 18
25 Cα yes 63700992 18
26 O no 764411904 52
27 C yes 764411904 52
28 H no 9172942848 10

TABLE I
THE NUMBER OF BRANCHES, STEP BY STEP, OF THE DISCRETE DOMAIN

WITH AND WITHOUT PRUNING.

pruning away all the branches containing infeasible solutions.
We prune, for example, at level 11 when considering the
hydrogenH of the second amino acid. In the previous layer
of the tree, 720 branches are contained. At level 11, two
branches are added to the ones of the previous layer. As a
consequence, 1440 branches are considered in total, but only
10 branches pass the pruning test. Similarly, at level 14, 20and
28, the pruning phase allows to drastically reduce the number
of branches. The pruned tree has only 10 leaf nodes, which
represent the 10 solutions related to our small instance.

Algorithm IV is an extension of the BP algorithm, previ-
ously proposed in [9], for considering interval data. It is natu-
rally implied from the discussion above. Our implementation
of this extension of the BP algorithm is able to find the 10
solutions for the instance detailed above in less than 1 second
of CPU time.

We also performed some experiments by considering larger
instances. The procedure which has been employed for gen-
erating such instances is exactly the same as before, with the
only difference that the ordering for the generic amino acid
(see Figure 4) is repeated as many times as needed. Naturally,
these instances do not represent well real protein backbones
for the general shape they have, but they are still useful forthe
purposes of the experiments. The experiments (see Table II)
showed that the discretization with interval data can also be
applied to instances having a larger dimension. In the table,

0: branch-and-prune(i, n, d, nbranches)
if (xi is a duplicated atom)then

assign toxi the same coordinates of its previous copy;
branch-and-prune(i+ 1,n,d,nbranches);

else
if (d(i − 3, i) is exact)then

b = 2;
else

b = nbranches;
end if
for (k = 1, b) do

compute thekth atomic position for theith atom:xk
i ;

check the feasibility of the atomic positionxk
i :

if (xk
i is feasible)then

if (i = n) then
a solution is found;

else
branch-and-prune(i+ 1,n,d,nbranches);

end if
else

the current branch is pruned;
end if

end for
end if

naa is the total number of amino acids,n is the total number
(including the repetitions) of considered atoms and|E| is the
number of distances which are available (exact distances and
intervals). We only require one solution, and therefore #Sol
is always 1. Finally, the CPU time increases to almost half
an hour when the largest instance (with 1000 amino acids)
is considered. We point out that the experiments have been
performed on an Intel Core 2 CPU 6400 @ 2.13 GHz with
4GB RAM, running Linux.

V. CONCLUSION

In this paper, we defined an artificial ordering for dis-
cretizing MDGPs with interval data. This ordering allowed
us to solve two issues which arose while working on other
discretization approaches. First, we are now able to consider
interval data provided by NMR experiments. Secondly, we are
now able to consider the hydrogens of the protein backbones
together with the other backbone atoms, which allows to avoid
the numerical instabilities of the previously proposed approach
[8], based on the solution of a sequence of linear systems.

naa n |E| #Sol time
10 91 716 1 0.1 s
100 901 7556 1 0.6 s
1000 9001 75956 1 27 m

TABLE II
SOME EXPERIMENTS WITH LARGER INSTANCES. ONLY ONE SOLUTION IS

REQUIRED.
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