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Given a set of distances between pairs of points, the Distance Geometry Prob-
lem (DGP) is the one of finding an embedding of the set of points in a K-
dimensional Euclidean space. It has several interesting applications such as
the Molecular DGP (MDGP) [1], where K = 3.

The existence of an embedding in RK satisfying a set of exact distances can
be verified by the Cayley-Menger conditions [2]. In the MDGP, a set of dis-
tances is embeddable if and only if all Cayley-Menger determinants of 3 and 4
points have the correct sign(corresponding to the triangular and tetrangular
inequalities) and the ones of 5 and 6 points vanish. Another way to verify
the embeddability of a set of distances in a generic K-dimensional space is
answering whether a partial distance matrix (Dij = d2

ij), with missing entries,
can be completed to a Euclidean distance matrix D. If so, the Cartesian co-
ordinates can be obtained, in polynomial time, by factoring K†(D) = XTX,
where K†(D) is a linear transformation of D and X is a K ×N matrix whose
columns are the coordinates of the N points [3].

More recently, a discrete approach was proposed where points are embedded
following a predefined order which ensures that, for each point, there are at
least K distances to previous “non-colinear” reference points [4]. Under the
assumptions granted by the order, and in the hypothesis an embedding exists,
each point has at most 2 possible positions with respect to the references. Thus,
the set of candidate embeddings is discrete and the search space becomes a
binary tree. Although the worst case complexity of a search in such a tree
is exponential, the additional distances, not used in the discretization, can
be exploited to prune away infeasible branches and speed up the search. The
algorithm that performs this search is called Branch-and-Prune (BP) and its
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Fig. 1. Illustration of the symmetries in a binary tree for K = 2. Although d14

prunes out the vertices 6 and 7, the interval distance d15 allows any candidate in
the fifth layer.

efficiency has been demonstrated in artificial instances related to proteins.
Furthermore, by exploiting the symmetries of the search tree [5], it is possible
to prove that the tree width is bounded. This explains the polynomial behavior
of the BP algorithm in such problems [6].

In practice, however, only the distances provided by covalent geometry can be
considered as exact, whereas the information obtained through NMR exper-
iments provides distance bounds. Some preliminary steps for extending the
discrete approach to deal with interval distances were previously published
in [7]. Some interval distances need to be used for the discretization and D
equidistant samples are taken from each of them in order to generate 2 × D
candidate positions. As a consequence, the search tree is no longer binary: the
extension of BP to deal with interval distances is named interval BP (iBP).

Recent computational experiments [8, 9] showed that the difficulties encoun-
tered by iBP are due to the following main reasons:

• the sampled distances are taken independently in each layer of the tree and,
in particular for D small, it is not likely that they satisfy the embeddability
conditions;
• interval pruning distances affect the boundness of the tree width. Even if the

tree is binary, an interval pruning distance may allow much more than two
feasible nodes per layer (see Figure 1), possibly leading to a combinatorial
explosion.
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The latter difficulty can be mitigated by introducing additional pruning cri-
teria, for instance, based on chemical-physical properties of the molecule [10].

In this work, we handle the first issue. By taking into account the regular
structure of the protein backbone, we propose heuristics for joint sampling
from interval distances between hydrogens atoms. As a preprocessing, we apply
bound smoothing [2] and Cayley-Menger inequalities to reduce the interval
distances. Then, in the first phase, we obtain samples for the distances related
to hydrogens by metrization [2] or solving a matrix completion problem [3]
involving hydrogens only. In the second phase, the obtained distances between
hydrogens feedback the iBP algorithm to guide the sample selection. In each
layer, we shrink the discretization interval by intersecting the previous pruning
distances [9]. This process provides a set of feasible intervals from where the
samples are taken. We select as sample distances, in the reduced discretization
intervals, the closest ones to the candidate distance obtained by the first phase.
Therefore, each sampled discretization distance is compatible with the (so
far) available pruning distances and minimize the deviation to the distance
suggested by phase one.

The presented approach represents a little step towards the solution of Dis-
cretizable MDGPs with interval data where the sampling phase of iBP is
critical, and a joint sampling is necessary due to the dependency between
interval discretization distances, imposed by the embeddability conditions.
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