
Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Bash Scripting

Antonio Mucherino

www.antoniomucherino.it

University of Rennes 1, Rennes, France

last update: May 2nd 2016

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

What’s bash

Bash is a shell written by Brian Fox for the GNU Project as a
free software.

Bash is widely distributed as a default shell for Linux and
Mac OS X.

Bash is a command processor, and it typically runs in a text
window.

Bash allows the user to type commands which cause actions.

Bash can also read commands from files, which are called scripts.

Bash has programming language features (interpreted).

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Why bash

It’s the standard GNU shell, intuitive and flexible.

Other shells:

sh subset of Bash, basic shell originally developed for Unix.

csh a shell whose syntax resembles to the C programming language.

tcsh superset of csh, enhancing user-friendliness and efficiency.

ksh superset of sh, for experts.

The main aim of this course is to learn how to efficiently use and

develop scripts in Bash.

Before continuing . . .

It is very important that you’re familiar with the concept of

algorithm

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Why bash

It’s the standard GNU shell, intuitive and flexible.

Other shells:

sh subset of Bash, basic shell originally developed for Unix.

csh a shell whose syntax resembles to the C programming language.

tcsh superset of csh, enhancing user-friendliness and efficiency.

ksh superset of sh, for experts.

The main aim of this course is to learn how to efficiently use and

develop scripts in Bash.

Before continuing . . .

It is very important that you’re familiar with the concept of

algorithm

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Let’s get started: Hello World!

The first bash script

#!/bin/bash

Hello World script

echo "Hello World!"

all lines starting with # are considered as comments, and won’t be
interpreted

the line “#!/bin/bash” must be present in every bash script, at the
beginning of the file

echo is a bash shell command that prints on the screen its arguments

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Hello World: execution

In order to execute the script, we need to

copy its content into a text file: hw

make sure we have the right to execute the file:

−rwxr−x−−x 1 mucherin genscale 75 Sep 11 14:41 hw*

invoke the script:

> hw

Hello World!

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Variables

In Bash, we can use variables for holding certain values

integer numbers (not real ones in Bash)

boolean values (as integers, e.g. 0 and 1)

strings (ordered sets of characters)

in the computer memory.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Variables

Variable: a symbol representing a quantity capable of assuming
any of a set of values.

Example: number=1

Important: Never leave a blank character between the variable
name and the assignment symbol “=”.

The access to a variable content can be done by using the

symbol “$”

number=1 echo $number

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Arrays of variables

An ordered list of variables can be represented by an array in
Bash:

Integer variables

i=1 ; a[$i]=$i

i=2 ; a[$i]=$i

i=4 ; a[$i]=$i

Strings

str[1]=’first string’

str[2]=’second string’

str[4]=’last string’

Indices do not have to be consecutive.

Array information:
${arr[*]} ${arr[@]} refers to all items in the array
${!arr[*]} ${!arr[@]} refers to all indices in the array
${#arr[*]} ${#arr[@]} is the number of items in the array

${#arr[i]} is the length of item i

Bash does not support multidimensional arrays.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Input arguments

Previously defined variables can be given to bash scripts as input
arguments:

$# − this symbol refers to the number of input arguments (it
does not count $0)

$0 − this symbol refers to the name of the script (this is
always the first argument)

$1 − this symbol refers to the second input argument, if any

$2 −

${10} − this symbol refers to the eleventh input argument, if
any

.

$* or $@ − these two symbols refer to all input arguments, in
order, starting from the argument $1

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Input arguments

A set of arguments can be accessed in different ways.

Possibility 1 We use the symbol $@ (or the symbol $*) to refer
to a string (only one!) containing all arguments (starting from $1)

Possibility 2 We use the symbol $@ (but not the symbol $*),
and we copy the whole set of arguments inside an array:

array=("$@")

Possibility 3 We use the command shift:

$#←− $#-1
lost←− $1←− $2←− . . .←− $9←− ${10}←− . . .

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

A personalized message

The script:

#!/bin/bash

personalized Hello World script

echo "Hello $1 $2 !!!"

The execution (we still suppose this script is the text file “hw”)

>

> hw Nicolas Sarkozy

Hello Nicolas Sarkozy !!!

>

Question: what if we expect more arguments (more pairs first

name / surname) ??

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

A personalized message

#!/bin/bash

personalized Hello World script

echo "Hello $* !!!"

> hw Nicolas Sarkozy

Hello Nicolas Sarkozy !!!

>

> hw Francois Hollande

Hello Francois Hollande !!!

>

> hw Nicolas Sarkozy Francois Hollande

Hello Nicolas Sarkozy Francois Hollande !!!

>

Question: what if we want to make the message nicer, by
separating the names and surnames with the word “and” ??

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

A personalized message

#!/bin/bash

personalized Hello World script

echo -n "Hello "

while [$# -gt 0]

do

echo -n $1; shift

echo -n " "

echo -n $1; shift

if [$# -gt 0]

then

echo -n " and "

fi

done

echo " !!!"

>

> hw Nicolas Sarkozy Francois Hollande

Hello Nicolas Sarkozy and Francois Hollande !!!

>

Notice the use of the option -n in echo.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Control structures

In the last example, we made use of control structures.

IF executes a command (or a block of commands) when a certain
condition is satisfied

FOR repeats a command (or a block of commands) a predefined
number of times

WHILE executes a command (or a block of commands) while a
given condition is satisfied

REPEAT . . . UNTIL executes a command (or a block of
commands) until a given condition is satisfied

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The sum of n numbers

Text file sum

#!/bin/bash

sum=1

for ((i=2 ; i<=$1 ; i++))

do

sum=$sum+$i

done

echo "The sum of the first $1 integer numbers is $sum"

Execution:

> sum 5

The sum of the first 5 integer numbers is 1+2+3+4+5

Note that, by default, the arithmetic operation ‘+’ is not executed!!

We need to use the command let.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The sum of n numbers

Text file sum with the command let

#!/bin/bash

sum=1

for ((i=2 ; i<=$1 ; i++))

do

let sum=$sum+$i

done

echo "The sum of the first $1 integer numbers is $sum"

Execution:

> sum 5

The sum of the first 5 integer numbers is 15

> sum 100

The sum of the first 100 integer numbers is 5050

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Prime numbers

A prime number is a natural number greater than 1 that has no
positive divisors other than 1 and itself.

1: #!/bin/bash

2: let n=$1 # number to check

3: let m=1+$n/2 # divisor cannot be greater than n/2

4: let bool=1 # true

5: for ((i=2 ; i<=m; i++))

6: do

7: let d=$n%$i

8: if [$d -eq 0]

9: then

10: let bool=0 # false

11: fi

12: done

13: if [$bool -eq 1]

14: then

15: echo "$n is a prime number"

16: else

17: echo "$n is NOT a prime number"

18: fi

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Prime numbers

Explanation of main lines:

2: the number to be checked is copied in n

3: the script tries to divide n by all integers smaller than n/2

7: the operator % gives the rest of the division of n by i, with i

having values from 2 to m

8: if one of the rests d is 0, then n admits a positive divisor
greater than 2, and therefore it is not a prime

8: important: in if structures, always leave a blank character
between the conditions and the brackets

13: the information “not prime” is saved in a boolean variable,
that is reused at the end of the script for printing the
appropriate message

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Boolean variables and operators

There is no specific type for boolean variables in Bash.

True False

1 0

Comparisons in bash:

integer numbers
-eq -ne -lt -gt -le -ge

= 6= < > ≤ ≥

strings
-z -n = !=

is empty is not empty = 6=

Logical operations in bash:

-a -o !

and or negation

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Prime numbers

Some executions:

> prime 21

21 is NOT a prime number

>

> prime 17

17 is a prime number

>

> prime 121

121 is NOT a prime number

>

> prime 27

27 is NOT a prime number

>

> prime 31

31 is a prime number

>

> prime 87

87 is NOT a prime number

>

> prime 11

11 is a prime number

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

A detailed execution

Let’s execute the script for n = 21.

Step 1. we set m = 11

Step 2. we divide m by i, for each i from 2 to m:

i 2 3 4 5 6 7 8 9 10 11

d 1 0 1 1 3 0 5 3 1 10

Step 3. n is not prime.

At the second iteration of the for loop, we can already state that

the number is not prime!

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Prime numbers

An improved version with WHILE.

1: #!/bin/bash

2: let n=$1 # number to check

3: let m=1+$n/2 # divisor cannot be greater than n/2

4: let bool=1 # true

5: let i=2

6: while [$i -le $m -a $bool -eq 1]

7: do

8: let d=$n%$i

9: if [$d -eq 0]

10: then

11: let bool=0 # false

12: fi

13: let i=$i+1

14: done

15: if [$bool -eq 1]

16: then

17: echo "$n is a prime number"

18: else

19: echo "$n is NOT a prime number"

20: fi

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Prime numbers

. . . and REPEAT . . . UNTIL.

1: #!/bin/bash

2: let n=$1 # number to check

3: let m=1+$n/2 # divisor cannot be greater than n/2

4: let bool=1 # true

5: let i=2

6: until [$i -gt $m -o $bool -eq 0]

7: do

8: let d=$n%$i

9: if [$d -eq 0]

10: then

11: let bool=0 # false

12: fi

13: let i=$i+1

14: done

15: if [$bool -eq 1]

16: then

17: echo "$n is a prime number"

18: else

19: echo "$n is NOT a prime number"

20: fi

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Manipulating the file system

All commands available in Bash can be used in the scripts

ls

pwd

cd

cp

mv

rm

mkdir

cat

who

find

grep

ps

alias

chown

make

tar

ar

. . .

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Combining commands in scripts

Commands pwd and ls, in a single shot:

> cat pwdls

#!/bin/bash

echo "The content of the directory:"

pwd

echo "is the following:"

ls

>

> ls

prime* prime2* pwdls*
> pwd

/userfiles/Bash/scripts

>

> pwdls

The content of the directory:

userfiles/Bash/scripts

is the following:

prime* prime2* pwdls*
>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Conditions concerning files

Conditions to be verified in if control structures can also concern
files in the file system.

if [option $file]

then

...

fi

option verifies whether

-e the file exists
-f it’s a normal file
-d it’s a directory
-r it can be read
-w it can be modified
-x it can be executed
-s it’s not empty

file is a string containing the name of the file to be checked.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

For loop for files

The for control structure can be used for enumerating all files (or
part of them) belonging to a given directory.

> ls

myls* prime* prime2* pwdls*
>

> cat myls

#!/bin/bash

for i in *
do

echo $i

done

>

> myls

myls

prime

prime2

pwdls

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

sl : an inverted ls

In our scripts, we may want to consider the files in an inverse
alphabetic order.

Script:

#!/bin/bash

let k=0

copying

for i in *
do

let k=$k+1

file[k]=$i

done

let n=$k

printing in the inverse sense

for ((k=$n ; k>0 ; k--))

do

echo ${file[k]}

done

Execution:

> myls

myls

prime

prime2

pwdls

sl

>

> sl

sl

pwdls

prime2

prime

myls

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The magic dollar $

The symbol $ can be used for accessing the value of a variable,
as well as the value of the input parameters of a script.

The symbol $ can also be used for retrieving the output from
commands that are executed inside scripts (standard output)

> cat dollar1

var=$(whoami)

echo "My username is: $var"

> dollar1

My username is: mucherin

>

> cat dollar2

var=$(pwd)

echo "The current directory is: $var"

> dollar2

The current directory is: /userfiles/Bash/scripts

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The size of a file

du is one of the most reliable commands for retrieving the size (in
terms of bytes with the option -b) of a file. However, it also
provides additional information we may not be interested in.

> du -b BashScripting.pdf

311119 BashScripting.pdf

The output is given in tabular format (TAB separates the size and
the name). The command cut can be used for filtering the fields
of a table:

> du -b BashScripting.pdf | cut -f 1

311119

Finally, in a script, we may write:

var=$(du -b BashScripting.pdf | cut -f 1)

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The maximum ls (mls)

Let’s write a script that only prints the largest file of a given set of
files:

> ls -l

-rw-r----- 1 mucherin genscale 416125 Sep 26 15:53 BashScripting.pdf

-rw-r----- 1 mucherin genscale 25508 Sep 26 15:56 BashScripting.tex

-rw-r----- 1 mucherin genscale 175 Sep 11 14:21 makefile

>

> mls *
416125 BashScripting.pdf 1

>

The list of files is given as an input argument (the symbol * is here

used for considering all files in the current directory).

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The maximum ls (mls)

#!/bin/bash

maxsize=0

posmax=0

filename="(no files found)"

identifying the file with maximum size

k=0

while [$# -gt 0]

do

if [-f $1]

then

let k=$k+1

size=$(du -b $1 | cut -f 1)

if [$maxsize -lt $size]

then

filename=$1

maxsize=$size

posmax=$k

fi

fi

shift

done

echo -e "$maxsize \t $filename \t $posmax"

Notice that echo is invoked with the option -e, which allows the use of special
characters, such as TAB (\t).

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

du and mls

These two commands have a similar output format:

> du -b BashScripting.pdf

371814 BashScripting.pdf

>

> ls

BashScripting.pdf BashScripting.tex makefile

>

> mls *
371814 BashScripting.pdf 1

They both output the results in tabular format.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Single brackets [·]

Single brackets [·] are equivalent to the execution of the
command test:

if [$a -eq $b] if test $a -eq $b

The second syntax works because test gives as an input an
integer number:

= 0 if the condition is satisfied,
6= 0 otherwise.

Since other commands and programs work at the same way (they
return 0 if they were executed with success), then the if control
structure can also be used as follows:

if cp $filename backup

then

echo "copy of $filename saved"

else

echo "impossible to copy file $filename"

fi

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Double parenthesis ((·))

Double parentheses allow us to perform arithmetic operations
(like let) while omitting the dollar $ and enabling to include blank
characters around operators (improving thus readability).

let a=$b+1 a = $((b + 1))

Double parentheses are used in the for control structure: this is
the reason why it is not necessary to use $ when referring to the
variables:

for ((i=1 ; i<n ; i++))

do

...

done

Double parentheses allow for using a C-like syntax:

((a = 10)) ((i++)) if ((a == 10))

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Double brackets [[·]]

In more recent implementations of Bash, double square brackets
are an extension of single ones, where C-like operators (such as
&& and ||) are allowed.

if [$a -eq 0 -a $b -ne 1]

then

...

...

fi

if [[$a == 0 && $b != 1]]

then

...

...

fi

When using double brackets, strings containing blank characters
are not separated in different words!

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Single braces { · }

Braces allow for generating an ordered list of integer numbers or
characters in an easy and intuitive way.

for i in {1..10} for ((i=1; i<=10; i++))

do do

echo $i echo $i

done done

Other examples:

var1=1

var2=5

echo {e..m} # e f g h i j k l m

echo {3..-2} # 3 2 1 0 -1 -2

echo {1..2}{x..y}" +" + "..." # 1x + 1y + 2x + 2y + ...

echo {$var1..$var2} # 1 2 3 4 5

Remember that we already used braces when working with

arrays in Bash.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Avoiding expansions

The first interpretation task of the shell is the so-called expansion

of the special characters, including brackets. Other examples are:

* all files in the current directory

. the current directory

! last command in the shell

Important: expansions also apply to characters contained in
strings! To avoid this:

use backslash * for one character only
use quotes “yes!” for more than one character

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

String manipulation operators

Let’s consider this short Italian sentence: str=“ciao bella”

This is a small list of manipulation operations that can be applied
to strings:

n=${#str} 10

a=${str:0:4} ciao

b=${str:(-5)} bella

c=${str#ciao} bella

c=${str#c*o} bella

d=${str%bella} ciao

d=${str%b*a} ciao

e=${str/bella/brutta} ciao brutta

→ removes the prefix that follows this symbol (if present)
% → removes the suffix that follows this symbol (if present)

* → refers to any substring
the command sed performs similar operations on text files

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Patterns and comparisons

In some applications, we may need to compare our strings to a
certain number of possible strings.

For example, the string [Hh]ello World! matches with both

Hello World! hello World!

Pattern generators:

[abc] matches with either a, b or c
[ˆabc] negation of what above
[a-z] matches with all characters from a to z

[1-9] matches with all numbers in the given range

Syntax for performing the comparison:

if [[$substring =~ [abc]ed]] then do ... done

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The command bc

bc is an arbitrary precision calculator language.

> bc

bc 1.06.95

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software

This is free software with ABSOLUTELY NO WARRANTY.

For details type ‘warranty’.

a = 1 # I wrote this

b = 2 # I wrote this

a+b # I wrote this

3

a-b # I wrote this

-1

a/b # I wrote this

0

scale=10 # I’m changing the precision

a/b # trying again ...

.5000000000

quit

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Average file size

If we can deal with real numbers, in our scripts we can compute,
for example, the average of a set of integer numbers.

> ls -l

total 24

-rwxr-x--- 1 mucherin genscale 416 Sep 29 23:46 minmaxavg*
-rwxr-x--- 1 mucherin genscale 380 Sep 23 17:22 mls*
-rwxr-x--- 1 mucherin genscale 483 Sep 23 17:22 sls*
-rwxr-x--- 1 mucherin genscale 635 Sep 29 23:45 sortls*
-rwxr-x--- 1 mucherin genscale 681 Sep 29 23:45 sortls2*
-rwxr-x--- 1 mucherin genscale 994 Sep 29 23:45 sortls3*
> minmaxavg *
380 606.1666666666 994

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Average file size

#!/bin/bash

size=$(du -b $1 | cut -f 1) ; n=1

min=$size ; max=$size ; sum=$size

shift

while [$# -gt 0]

do

if [-f $1]

then

let n=$n+1

size=$(du -b $1 | cut -f 1)

if [$min -gt $size]

then

min=$size

fi

if [$max -lt $size]

then

max=$size

fi

sum="$sum + $size"

fi

shift

done

avg=$(echo "scale=10; ($sum)/$n" | bc)

echo -e "$min \t $avg \t $max"

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Functions in Bash

Every time it is necessary to repeat (in different parts of a script,
and/or in different scripts) the same set of commands, we can
create a function containing such a set of commands:

function simplefun ()

{

echo "My first argument is: $1; "

echo "My second argument is: $2"

}

Input/output in functions:

input arguments are given to the function as in scripts: the
same set of built-in variables can be used,

the function returns its output to the invoking script by using
the command echo.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Functions in Bash

Consider the following script (simplefun appears before its call):

#!/bin/bash

function simplefun ()

{

echo "My first argument is: $1; "

echo "My second argument is: $2"

}

var=$(simplefun $*)

echo $var

In order to invoke a function that is contained in another script:

#!/bin/bash

source script_containing_simplefun.sh

var=$(simplefun $*)

echo $var

What do you expect to be the output on the screen?

> testfun 1 2

My first argument is: 1; My second argument is: 2

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Functions in Bash

Consider the following script (simplefun appears before its call):

#!/bin/bash

function simplefun ()

{

echo "My first argument is: $1; "

echo "My second argument is: $2"

}

var=$(simplefun $*)

echo $var

In order to invoke a function that is contained in another script:

#!/bin/bash

source script_containing_simplefun.sh

var=$(simplefun $*)

echo $var

What do you expect to be the output on the screen?

> testfun 1 2

My first argument is: 1; My second argument is: 2

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Local and global variables

Differently from many programming languages, a variable that is
used inside a function is visible everywhere else (other functions,
the main script).

In order to force a certain variable to be local, we can employ the
following syntax:

glo_var=100 # this is a global variable

local loc_var=200 # this is a local variable

Therefore, it’s necessary paying attention to variables having the

same name that might be used in various functions and/or in the

main script.

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Another syntax for for

The control structure for can work on arrays of strings, as well as
on strings containing more items separated by blank characters.

let k=1

for i in *
do

allfiles="$allfiles $i"

file[k]=$i

let k=$k+1

done

for i in ${file[@]}

do

echo $i

done

for i in $allfiles

do

echo $i

done

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Reading data

The command read is able to load inside a variable the content
of a string of characters:

it can be written at the prompt by using the keyboard

it can be redirected from a text file by using the shell

it can be redirected from a text file inside a script

> cat myscript

...

while read line

do

...

done

...

>

> myscript < textfile.txt

...

> cat textfile.txt | myscript

...

>

> cat myscript

...

while read line

do

...

done < $filename

...

>

> myscript

...

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Selecting the rows of a table

Let us write a script that selects the rows of a table having a
certain property.

> cat phonenumbers.txt

Alain Delon M 0033 123456789

Nicole Kidman F 001 123456789

Francesca Neri F 0039 123456789

Tom Hanks M 001 123456789

Terence Hill M 0039 123456789

Eva Herzigova F 00420 123456789

Hugh Laurie M 0044 123456789

>

> select M < phonenumbers.txt

Nicole Kidman F 001 123456789

Francesca Neri F 0039 123456789

Eva Herzigova F 00420 123456789

>

In this example, all rows referring to phone numbers belonging to
woman are selected ;-)

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Selecting the rows of a table

This is the script:

#!/bin/bash

sex=$1

while read -a arr

do

if [${arr[2]} != $sex]

then

echo ${arr[*]}

fi

done

Remarks:

sex is an input argument

the option -a for read indicates that the input text is supposed to be
separated in words (by default, the separation field is “ ”)

arr is therefore an array

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The king of text processing

AWK is a simple and fast command for text processing.

it is meant to work on column-oriented text data, such as
matrices and tables

it also has some programming language features

This is the simulation of cat with awk:

awk ’{print $0}’ textfile

$0 refers to the generic line of the file

all instructions between { and } are executed for each line of
the file

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The king of text processing

Built-in variables in awk:

NR counter of records (lines in the text file)
NF number of fields (words per line)
FS field separator (the character between two words,

default is “ ”)

$0 the current line (entire)
$1 the first word in the current line
$2 the second word in the current line
.
$(i) the i th word in the current line
.

$(NF-1) the last but one word in the current line
$NF the last word in the current line

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The king of text processing

Control structures in awk with some examples:

> cat matrix.txt

1 -2 3 3

3 4 -5 3

5 4 2 -7

>

> awk ’{if ($1 > 2) print $0}’ matrix.txt

3 4 -5 3

5 4 2 -7

>

> awk ’{ for (i = 1; i<=NF; i++) {

if ($i < 0) { printf "%d ",-$i } else { printf "%d ",$i } }

printf "\n" }’ matrix.txt

1 2 3 3

3 4 5 3

5 4 2 7

>

Notice that printf allows us to print in the format we prefer (it is similar to the C
function and to the Bash command printf)

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The king of text processing

Let’s apply this awk script to the list of our phone contacts:

awk ’{if ($3 != "M") print $0}’ phonenumbers.txt

or in short

awk ’$3 != "M"’ phonenumbers.txt

This is the result:

Nicole Kidman F 001 123456789

Francesca Neri F 0039 123456789

Eva Herzigova F 00420 123456789

Exactly the same we obtained with a Bash script!!

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Selecting rows or columns

This short awk script selects the rows of a matrix having pair
index:

awk ’NR%2 == 0’ matrix.txt

This short awk script selects the columns of a matrix having pair
index:

awk ’{

for (i=1; i<=NF; i++)

{

if ($i%2 == 0) printf "%s ",$i

}

printf "\n"

}’ matrix.txt

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

BEGIN and END

By default, awk processes the input text files line by line.

However, we might need to execute some actions before this
process begins, or after it ends.

BEGIN all actions are executed before processing the lines of
the text file

END all actions are executed after processing the lines of
the text file

awk ’BEGIN { begin actions }

{ actions line by line }

END { last actions } ’

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

BEGIN and END

A simple example with BEGIN and END:

> awk ’{ print "beginning" ; print $0 ; print "ending" }’

matrix.txt

beginning

1 -2 3 3

ending

beginning

3 4 -5 3

ending

beginning

5 4 2 -7

ending

>

> awk ’BEGIN { print "beginning" }

{ print $0 }

END { print "ending" }’ matrix.txt

beginning

1 -2 3 3

3 4 -5 3

5 4 2 -7

ending

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Word counter

This awk script counts the words contained into text files:

awk ’{

for (i=1; i<=NF; i++) freq[$i]++

}

END {

for (word in freq)

printf "%s\t%d\n",word,freq[word]

}’ text.txt

Remarks:

as in bash, there is a special syntax for the control structure
for that allows us to iterate on the elements of an array

in awk, indices of arrays can be strings !!!

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Working on two text files

NR counts all lines, for each file; FNR counts lines of current file.

> cat matrix1.txt matrix2.txt

1 2

3 4

a b

c d

> awk ’{

if (NR==FNR)

{

print "first file :",$0

}

else

{

print "second file:",$0

}

}’ matrix1.txt matrix2.txt

first file : 1 2

first file : 3 4

second file: a b

second file: c d

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Working on two text files

Given two matrices aij and bij , having the same size, we want to
define the matrix cij such that:

∀i, j cij = max{aij , bij}.

> cat matrix1.txt

1 -2 3 3

3 4 -5 3

5 4 2 -7

> cat matrix2.txt

8 4 -5 3

1 -2 4 3

5 -4 1 -6

>

> awk -f maxelement.awk matrix1.txt matrix2.txt

8 4 3 3

3 4 4 3

5 4 2 -6

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

Working on two text files

The awk script:

{

if (NR==FNR)

{

for (j=1; j<=NF; j++) var[FNR,j]=$j

}

else

{

for (j=1; j<=NF; j++) if (var[FNR,j] < $j) var[FNR,j]=$j

}

}

END {

for (i=1; i<=FNR; i++)

{

for (j=1; j<=NF; j++) printf "%d ",var[i,j]

printf "\n"

}

}

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The field separator

By default, the field separator FS in awk is a blank character.

However, we can change it, or use more than one separator!

> date

Wed Nov 13 14:40:37 CET 2013

>

> date | awk ’{print $1, $4}’

Wed 14:40:45

>

> date | awk -F ":" ’{print $1, $4}’

Wed Nov 13 14

>

> date | awk -F "3 " ’{print $1, $4}’

Wed Nov 1

>

> date | awk -F "[:]" ’{print $1, $4}’

Wed 14

>

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

awk one-liners

We print only the lines having at least one word:

awk ’NF > 0’ file.txt

We print only lines starting with “ATOM”

awk ’$1 == "ATOM"’ file.txt

We add the line number at the beginning of each line

awk ’{print NR, $0}’ file.txt

We compute the total size of the current directory

ls -l | awk ’{ x=x+$5 } END { print x }’

We remove the 2nd column from a matrix

awk ’{$2="", print $0}’ file.txt

Bash

A. Mucherino

Bash?
Basics

Control structures

FOR

IF

WHILE

REPEAT

Interaction with file
system

Expansions

String manipulations

Real variables

Functions

Text processing

AWK

The End

The End

	Bash?
	Basics
	Control structures
	Interaction with file system
	Expansions
	String manipulations
	Real variables
	Functions
	Text processing
	The End

