Numerical
Analysis

A. Mucherino

Notions of
Numerical Analysis

Antonio Mucherino

University of Rennes 1
Www. ant oni omucherino. it

last update: August 2013



Numerical
Analysis

A. Mucherino

Linear
systems

Numerical Analysis

Linear systems



Aircraft and wind

Numerical
Analysis

Suppose an aircraft flies from Paris to
Rio and then it comes back. Suppose
the wind is constant during the whole
travel and it is able to influence the
et speed of the aircraft.

the wind

A. Mucherino

@ Paris - Rio, time t; = 5.1 hours, aircraft flying against wind
@ Rio - Paris, time t, = 4.7 hours, aircraft flying with wind

@ distance: 5700 miles

How can we find the average speed of the aircraft and the
average speed of the wind?



How to solve this problem?

Numerical
Analysis

Let x be the average speed of the aircraft,
and let y be the average speed of the wind:

A. Mucherino
@ the actual aircraft speed is x —y when it flies against the wind

@ the actual aircraft speed is x +y when it flies with the wind

i the speed o @ the distance d for each travel can be computed as the product between the
the vind time (t; or ty) and the actual speed

We can define the following system of equations:

{ ti(x —y)=d
(x +y)=d

This is a linear system:
@ t1, t; and d are parameters (already known)

@ x and y are variables



Linear systems

Numerical General form of a linear system with 2 equations:

Analysis

A. Mucherino agiX + alZy - bl
ax X +axpy = b2

Bl And, in matrix form:
ain X\ _ by
a1 QA y b2

The coefficient matrix ( :11 :12 ) is able to provide information
21 22

@ about the existence of solutions

@ about the number of solutions

(out of the scope of this course).



The solution for our example

Numerical
Analysis

For the system

A. Mucherino

t1X —ty = d
toX +ty = d

we can find a solution (x,y) analytically:




The solution for our example

Numerical

Analysis So, in our example:

A. Mucherino

@ t; =51
o t, =47
@ d =5700

Finding the speed of
the wind

and therefore:

x = 1165.2 miles/hours

y = 47.6 miles/hours

Can we program a computer to make this work for us?

Note that, in this simple example, we did not consider the health rotation.



Back substitution

Numerical
Analysis

A. Mucherino Suppose the coefficient matrix of our linear system is an upper
triangular matrix:

ajp Az a3z aig X1 by

P 0 ax» ax ax X2 b,
0 0 azs am X3 | | bs

0 0 0 aqa Xq b4

In this situation, we can compute:

X4 = —
Asg



Back substitution

Numerical
Analysis

A. Mucherino Suppose the coefficient matrix of our linear system is an upper
triangular matrix:

ajp Az a3z aig X1 by

P 0 ax» ax ax Xo | | b
0 0 ass am X3 | | bs

0 0 0 Ay Xa b4

In this situation, we can compute:

bs — azaXa
Xg = ————
ass



Back substitution

Numerical
Analysis

A. Mucherino Suppose the coefficient matrix of our linear system is an upper
triangular matrix:

ajp Az a3z aig X1 by

P 0 ax» ax ax X2 | | b
0 0 azs am X3 | | bs

0 0 0 A Xa b4

In this situation, we can compute:

by — az3X3z — axaXa
Xo =

azp



Back substitution

Numerical
Analysis

A. Mucherino Suppose the coefficient matrix of our linear system is an upper
triangular matrix:

aj; A2 a3z aig X1 by

P 0 ax» ax ax Xo | | b
0 0 azs am X3 | | bs

0 0 0 A Xa b4

In this situation, we can compute:

b1 — 12X — 13Xz — @14X4
ai

X1 =



C function for back substitution

Numerical
Analysis

voi d back(int n,double **a, doubl e *x)
A. Mucherino {

/1 nis the system di mension

/1l ais the coefficient matrix

Il (must be upper triangul ar)
Il xis
I the vector of known terms (input)
Asimple algorithm // t he sol ution (out put )
int i,j
for (i =n-1; i >=0; i--)
{
for (j =1+1; j < n; j++)

§ X[i1 = x[i] - alil[j]*x[j];
x(i] = x(il/alil[i];



Gaussian elimination

Numerical
Analysis

A. Mucherino How to solve linear systems whose coefficient matrix is not in
triangular form?

Gaussian elimination method : transform the system in an
equivalent system whose coefficient matrix is in triangular form.

A simple algorithm

Example:
2xXx 4y -z = 8
-3 -y +2z = -11
—-2X +y +2z = -3
2X +y -z = 8
= L + l, 1
2y "3



LAPACK

Numerical
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LAPACK - Linear Algebra PACKage

free library for linear algebra
AT (including linear systems)

rrrree
BpbBb>
EEEREE]
»EbBbD>
onhb00
ERXRXRERX

@ it's a freely-available software package (library + sources)

@ originally developed in Fortran, there are versions for C and
C++

@ it's based on another library called BLAS, which contains
functions for efficient matrix manipulations
(sums, products, ...)



Some references

Numerical
Analysis
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Wikipedia page about linear systems,
http://en.w ki pedi a. org/ wi ki / System of _| i near _equat i ons

Asimpl algorihm @ Online solution of linear systems,
http://karl scal cul us. org/cgi-bin/linear.p

@ LAPACK,
http://ww. netlib. org/lapack/

@ BLAS,
http://netlib.org/blas/
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functions



Stationary points

Numerical
Analysis

In many applications, stationary points of functions are of
particular interest.

A. Mucherino

They might provide:
@ the minimum and maximum points of functions
@ the equilibrium point of a dynamic system (may be stable or not)
o ...

In order to find a stationary point, the derivative of a function must
be computed, and roots of such a derivative must be identified:

df(x)
dx

0



Functions and roots

Numerical
GUEVES Given afunction f : [a,b] — Y, how to find its roots (zeros)?

A. Mucherino

f(x)=0
Examples:
b
ax=b = x=—-
a
—b — Vb2 — 4ac
X1 =
2a
ax’+bx +c=0 =
« —b + vb? — 4ac
2:

2a



A simple method

N/g:v;leyré?sl Simplest method for finding roots

Extract a predefined number of points from the function domain
[a,b] and evaluate the function in all these points. One of these
points can be a root (or be close to a root).

A. Mucherino

Functions and roots

v

Nl

This method is not able to provide a good approximation of roots of functions
having a more complex shape.



Bisection: basic idea

is an iterative method which defines a
itmax converging to one

Numerical The bhisection method

Analysis

.....

A. Mucherino

function root.
At the beginning, the whole function domain is considered:
[aOv bO] = [av b]

At each iteration, the following two steps are performed:

@ the average point of the current interval is computed:

The bisection

method

bk — ag
2

Xk = ax +

@ the new interval is then defined as:

a1, biya] = [aw, xi] iF - f(a)f(xk) <0
[ak+1, bk+1] = [Xk, bk] otherwise



Bisection: basic idea

Numerical

A In the bisection method, intervals [ax, bx] are reduced in size at
each iteration, and they are supposed to converge to a function
root.

A. Mucherino

The bisection
method




Bisection: basic idea

Numerical

A In the bisection method, intervals [ax, bx] are reduced in size at
each iteration, and they are supposed to converge to a function
root.

A. Mucherino

The bisection
method




Bisection: basic idea

Numerical

A In the bisection method, intervals [ax, bx] are reduced in size at
each iteration, and they are supposed to converge to a function
root.

A. Mucherino

The bisection
method

|



Applicability

Numerical
RULPEE The bisection method can be applied to functions f : [a,b] — Y:

A. Mucherino

@ if all points in [a, b] can be evaluated

@ if f is a continuous function

Moreover, if at least one of the intervals [ay, bk] is such that
f(ak)f(bk) <0

The bisection

waiizd then, the method converges toward one of the roots contained in
the interval.

The method can be stopped when
lax — by| < € or If(ax) — f(bk)| < e

where ¢ is a small real number (tolerance).



C function for the bisection algorithm

Numerical doubl e bi section(doubl e a, doubl e b, doubl e (*f)(doubl e), doubl e eps,int
Analysis {

it max)

. /1 [a,b], function domain

A. Mucherino /1 double (*f)(double), pointer to a function
/'l eps, tolerance

/1 itmax, maxinmum nunber of iterations

int it;
doubl e ca, cb, cx, fa,fb, fx;

ca=a;, cb=~"b; fa=~"f(a); fb = f(b);
cx = (catch)/2.0; fx = f(cx);
it =0
while (it <= itmax & fabs(fx) > eps && fabs(cb-ca) > eps && fabs(fb-fa) > eps)
{
=i
if (faxfx < 0)
{
cb = cx; fb = fx;

}

el se

{

ca =cx; fa = fx;

cx = (ca*ch)/2.0; fx = f(cx);

I

return cx;



Pointers to functions

DT A pointer to a function can make reference to any function of a

Analysis )
predefined type:

A. Mucherino

doubl e (*f) (doubl e)

In the main function:
doubl e xcube(doubl e x);
doubl e pol ynomi al (doubl e x);
doubl e bi section(doubl e a, doubl e b, doubl e (*f)(doubl e), doubl e eps,int itmax);
The bisection mai n()
method (
int i,j;
doubl e a, b, root;

doubl e *f (double);
f = xcube; root = bisection(a,b,f,0.001,100);

f = polynomi al; root = bisection(a,b,f,0.001,100);



Other methods for finding roots

Numerical
Analysis
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Newton’s method
it is based on the computation of the tangent to the function in the
current root approximation

@ Secant method
similar to the Newton’s method, but the tangent is replaced by a
secant (the function does not have to be differentiable in the whole
domain)

The bisection
method

@ Lehmer-Schur method
extension of the bisection method

@ Brent’s method
combination of different methods, including the bisection method,
with the aim of speeding up the search



Numerical
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Numerical Analysis
Polynomial interpolation

Interpolation



A reaction equilibrium constant

Numerical
Analysis

The equilibrium constant for ammonia reacting in hydrogen and
nitrogen gases depends upon the hydrogen-nitrogen mole ratio,
the pressure, and the temperature.

For a 3-to-1 hydrogen-nitrogen mole ratio, the equilibrium
constant K, for a range of pressures and temperatures is given

by:

A. Mucherino

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.018060 0.020742 0.024065
450°C | 0.007222 0.008023 0.008985 0.010134 0.011492
500°C | 0.004013 0.004409 0.004873 0.005408 0.006013
Areaon st 550°C | 0.002389 0.002598 0.002836 0.003102 0.003392

600°C | 0.001506 0.001622 0.001751 0.001890 0.002036

Encyclopedia of Chemical Technology, vol. 2, 2nd edition, New York, Wiley, 1963.



A reaction equilibrium constant

Numerical
Analysis
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Suppose that values for K, related to 500°C and 300 atm are not
available, and that, for same reason, we cannot perform any
experiment to find them.

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.020742  0.024065
450°C | 0.007222 0.008023 0.010134 0.011492
500°C
550°C | 0.002389 0.002598 0.003102 0.003392
600°C | 0.001506 0.001622 0.001890 0.002036

Areaction
equilibrium constant

How can we find the needed values for the constant K,?

Easiest solution: linear interpolation.



A reaction equilibrium constant

Numerical
Analysis

A. Mucherino

Suppose that values for K, related to 500°C and 300 atm are not
available, and that, for same reason, we cannot perform any
experiment to find them.

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.020742  0.024065
450°C | 0.007222 0.008023 0.010134 0.011492
500°C
550°C | 0.002389 0.002598 0.003102 0.003392
600°C | 0.001506 0.001622 0.001890 0.002036

Areaction
equilibrium constant

How can we find the needed values for the constant K,?

Easiest solution: linear interpolation.



A reaction equilibrium constant

Numerical
Analysis
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Suppose that values for K, related to 500°C and 300 atm are not
available, and that, for same reason, we cannot perform any
experiment to find them.

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.020742  0.024065
450°C | 0.007222 0.008023 0.010134 0.011492
500°C 0.005311
550°C | 0.002389 0.002598 0.003102 0.003392
600°C | 0.001506 0.001622 0.001890 0.002036

Areaction
equilibrium constant

How can we find the needed values for the constant K,?

Easiest solution: linear interpolation.



A reaction equilibrium constant
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Suppose that values for K, related to 500°C and 300 atm are not
available, and that, for same reason, we cannot perform any
experiment to find them.

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.020742  0.024065
450°C | 0.007222 0.008023 0.010134 0.011492
500°C 0.005311
550°C | 0.002389 0.002598 0.003102 0.003392
600°C | 0.001506 0.001622 0.001890 0.002036

Areaction
equilibrium constant

How can we find the needed values for the constant K,?

Easiest solution: linear interpolation.



A reaction equilibrium constant
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Suppose that values for K, related to 500°C and 300 atm are not
available, and that, for same reason, we cannot perform any
experiment to find them.

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.020742  0.024065
450°C | 0.007222 0.008023 0.010134 0.011492
500°C 0.005311 0.006618
550°C | 0.002389 0.002598 0.003102 0.003392
600°C | 0.001506 0.001622 0.001890 0.002036

Areaction
equilibrium constant

How can we find the needed values for the constant K,?

Easiest solution: linear interpolation.



A reaction equilibrium constant

Numerical
Analysis
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Suppose that values for K, related to 500°C and 300 atm are not
available, and that, for same reason, we cannot perform any
experiment to find them.

100 atm 200 atm 300 atm 400 atm 500 atm
400°C | 0.014145 0.015897 0.020742  0.024065
450°C | 0.007222 0.008023 0.010134 0.011492
500°C 0.005311 0.005965 0.006618
550°C | 0.002389 0.002598 0.003102 0.003392
600°C | 0.001506 0.001622 0.001890 0.002036

Areaction
equilibrium constant

How can we find the needed values for the constant K,?

Easiest solution: linear interpolation.



Linear interpolation

Numerical Letf : [a,b] — Y be a function such that
Analysis @ the pair (x1,f(x1)) is known, with x; € [a,b]

@ the pair (x2,f(x2)) is known, with x, € [a,b] and x, > X3
@ f(x) is not known for any x € (X1, X2)

A. Mucherino

Interpolation . .

¢ — — — —o
¢ — —o

[ ]
v

Linear interpolation: assign to the interval (X1, Xz) of f(x) the
equation of the line between x; and x,.



Linear interpolation

Numerical Letf : [a,b] — Y be a function such that
Analysis @ the pair (x1,f(x1)) is known, with x; € [a,b]

@ the pair (x2,f(x2)) is known, with x, € [a,b] and x, > X3
@ f(x) is not known for any x € (X1, X2)

A. Mucherino

Interpolation . .

—
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Linear interpolation: assign to the interval (X1, Xz) of f(x) the
equation of the line between x; and x,.



Linear interpolation

Numerical Letf : [a,b] — Y be a function such that
Analysis @ the pair (x1,f(x1)) is known, with x; € [a,b]

@ the pair (x2,f(x2)) is known, with x, € [a,b] and x, > X3
@ f(x) is not known for any x € (X1, X2)

A. Mucherino

Interpolation . .

¢ — — — —o
»—/

¢ — —o

v

Linear interpolation: assign to the interval (X1, Xz) of f(x) the
equation of the line between x; and x,.



Quadratic interpolation

M Letf : [a,b] — Y be a function such that
@ the pair (x1,f(x1)) is known, with x; € [a,b]

@ the pair (x2,f(x2)) is known, with x, € [a,b] and x, > X3

@ the pair (x3,f(X3)) is known, with x5 € [a,b] and x3 > X2 > X1

@ f(x) is not known for any x € [a,b]\ {x1,X2, X3}

A. Mucherino

A

Interpolation . .

¢ — — —
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v

Quadratic interpolation: assign to the interval (x1,x3) of f(x) the
equation of the parabola passing through xi, X, and.xs.




Quadratic interpolation

M Letf : [a,b] — Y be a function such that
@ the pair (x1,f(x1)) is known, with x; € [a,b]

@ the pair (x2,f(x2)) is known, with x, € [a,b] and x, > X3

@ the pair (x3,f(X3)) is known, with x5 € [a,b] and x3 > X2 > X1

@ f(x) is not known for any x € [a,b]\ {x1,X2, X3}

A. Mucherino

A

o/j\

Interpolation . .
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v

Quadratic interpolation: assign to the interval (x1,x3) of f(x) the
equation of the parabola passing through xi, X, and.xs.




Quadratic interpolation

M Letf : [a,b] — Y be a function such that
@ the pair (x1,f(x1)) is known, with x; € [a,b]

@ the pair (x2,f(x2)) is known, with x, € [a,b] and x, > X3

@ the pair (x3,f(X3)) is known, with x5 € [a,b] and x3 > X2 > X1

@ f(x) is not known for any x € [a,b]\ {x1,X2, X3}

A. Mucherino

A

Interpolation . .

¢ — — — —
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v

Quadratic interpolation: assign to the interval (x1,x3) of f(x) the
equation of the parabola passing through xi, X, and.xs.




Lagrangian interpolation

Numerical
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Letf : [a,b] — Y be a function such that

@ the pairs (x;,f(xi)) are known, with
Xi € {X1,X2,...,Xn} C [a,b]

@ f(x) is not known for any x € [a,b] \ {X1,X2,...,Xn}

Lagrangian interpolation:

assign to the interval (xq, Xp) of f(x) the equation of the
polynomial of degree n — 1 passing through the n points
X1, X2, ... Xp.



Lagrangian interpolation

Numerical
Analysis

A general polynomial of degree n — 1 can be written as:

A. Mucherino

f(X) = an_aX""t +an_ox"2 4 -+ ax? + aix + ag

For the polynomial to pass through the n points (x;, yi), we need
to solve the following system of linear equations:

Y1 = An_1X] T An_oX] 24 -+ apX? + agXq + ao

Y2 =an-1X) ' 4an oX) 2+ 4 apxZ +a1Xe + ao

Interpoaton .. Y3 = an71x2*1 + an,2X£|72 + -+ 4 apX2 + aiXs + ag

2

Yo = an_1Xn b4 an_oXh 2 4 -+ a2 + axn + ag




Lagrangian interpolation

Numerical

Analysis It can be proved that

G e @ the system of linear equations has only one solution:
{a07 alv a-2a s 7an—l}

@ the polynomial of degree n — 1 and having as coefficients the
found a;’s is such that:

yi=f(x), Vi=12,...,n

I The general formula for Lagrangian interpolation is:

0= I1 (5=%)

£ . = X
i=1  j=Lj#




C function for interpolation

Numerical
Analysis

doubl e interpol (int n,double xx,double *y, doubl e p)
A. Mucherino {

/1 n, nunber of available (x,y)

/1 x, vector containing all x's

/1y, vector containing all y's

/1 p, point where to eval uate |agrangi an pol ynoni al

int i,j;
doubl e sum prod;

sum = 0.0;
for (i=0; i<n; i++)
{
prod = 1.0;
for (j=0; j<n; j++)
if (jr=i)
{
prod = prod * ((p-x[j1)/(x[i]-x[j]));
Interpolation . . I
IS

sum = sum + y[i]*prod;

I

return sum



Numerical
Analysis
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..and regression?

Regression

Suppose that the form of f(x) is known a priori.

v

If f(x) is linear, would the lagrangian polynomial be a good
model?



Numerical
Analysis
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..and regression?

Regression

Suppose that the form of f(x) is known a priori.

v

If f(x) is linear, would the lagrangian polynomial be a good
model? No!

Solution : regression models.



Numerical

Analysis
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Numerical Analysis

Numerical integration

Numerical
integration



Archimedes

NAumleriqal Archimedes (287BCc-212BC) was a Greek mathematician, physicist,
nalysis . . . .

! engineer, inventor, and astronomer. He is generally considered to
be the greatest mathematician of antiquity.

A. Mucherino

Archimedes was able to approximate the area of a circle with
polygons converging to the shape of the circle.

He was able to approximate the value of 7 to 3.1416.

The area of a circle

http://en.wikipedia.org/wiki/Archimedes



Numerical
Analysis
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Numerical integration

b
Solving the definite integral /f(x)dx equals to finding the

a
area under the curve y = f(x) and between x = a and x = b.

A

We suppose:
@ aand b are not oo,
@ there are no points X € [a,b] such that f(X) = +oc.




Numerical integration

N:::y.-gg Idea: approximate the area defined by f(x) with the area of the
trapezoid ABCD:

A. Mucherino

A

> @
w®

Area of trapezoid: %h (f(a) +f(b)).

The area between y = f(x) and the segment DC corresponds to
the error introduced with this approximation.




Trapezoidal rule

Numerical Trapezoidal rule : divide [a, b] in n equal parts of length h and
Analysis . . .

approximate each subinterval [x;, xj+1] with the area of the
corresponding trapezoid:

A. Mucherino

A

b
4
4
4
b
\ 4




Trapezoidal rule: the C function

Numerical
Analysis

doubl e trapez(doubl e a, double b,int n,

doubl e (*f)(double
A. Mucherino ¢ )
/1 interval [a,b] (input)
/1 n, nunber of subintervals (input)

/1 f, pointer to function (input)

/1 returning value: approx. of the area defined by f(x) in [a,b]

int i;
doubl e h, area;
doubl e ca,ch,fa,fb;

h = (b- a)/n;

ca=a;, cb =ca+ h;
fa = f(ca); fb = f(cbh);
area = fa + fb

for (i =1; i <n; i++4)
{

ca =ch; fa = fb;
cb =cb + h; fb = f(cb);
area = area + fa + fb;

return h+areal 2.0;

Trapezoidal rule



Other algorithms

Numerical
Analysis

A. Mucherino

@ Simpson rule : instead of using trapezoids to approximate
the areas, parabolas interpolating 3 consecutive points are
employed. This simple modification increases the accuracy
of the method.

@ Gaussian quadrature : subintervals of [a, b] do not have the
same length but they are chosen so that the global accuracy
increases.

W.S. Dorn, D.D. Mc Cracken, Numerical Methods with Fortran IV Case Studies,
John Wiley & Sons, Inc., 1972.

Trapezoidal rule
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Optimization

Optimization



Optimization problems

Numerical
Analysis

A Muchering General form on an optimization problem:

it o)

subject to a set of constraints:

{ vx € B g(x)

where
@ f(x) is the objective function
@ g(x) represents the equality constraints

@ h(x) represents the inequality constraints

Definition and




Some methods for optimization

Numerical

Analysis Deterministic methods (may require some assumptions to be satisfied)

A. Mucherino

@ Simplex method
@ Branch & Bound
@ Branch & Prune

Heuristic methods  (no guarantees for optimality)
@ Simulated Annealing
@ Genetic Algorithms
@ Tabu Search
@ Variable Neighbourhood Search
o ...

Definition and
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