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Discretizable Distance Geometry

Getting started

Let G = (V,E, d) be a simple weighted undirected graph representing an instance of the Distance
Geometry Problem (DGP) in dimension 3. In the following exercises, our focus will be on
instances of the DGP consisting of exact distances only. When this is the case, we can say
that the graph G represents an instance of the Discretizable DGP (DDGP) if and only if, by
definition, there exists a vertex order for the vertices of G such that

A1 The first 3 vertices in the order from a clique;

A2 ∀v ∈ V : v > K, ∃u1, u2, u3 :

A2.1 u1 < v, u2 < v, u3 < v,

A2.2 {(u1, v), (u2, v), (u3, v)} ⊂ E,

A2.3 A(u1, u2, u3) > 0,

where A is the area of a possible triangle realizing the vertices u1, u2 and u3 so that the distances
in the clique are satisfied [3, 4]. The vertex order allowing for the discretization is named
discretization order [1, 2]. Our analysis will be restricted to discretization orders that are total
orders.

The assumptions of the DDGP make it possible to discretize the search domain of the DGP
represented by the graph G. In fact, assumption A1 allows us to fix the positions of the first
3 vertices in the vertex order, avoiding this way to generate the solutions that can be obtained
by rotations, translations and total reflections of other solutions. Assumption A2 ensures that,
for every vertex v that does not belong to the initial clique, at least 3 vertices exist that can
play the role of “reference” for v. In particular, assumption A2.1 ensures that all vertices uj

(for j ∈ {1, 2, 3}) always precede v in the ordering, while assumption A2.2 ensures that the
distance between every vertex uj and v is known. Finally, assumption A2.3 ensures that the
vertices uj are not aligned (notice however that this last assumption can fail to be satisfied with
probability 0). Under these assumptions, the search space is reduced to a tree, which can be
explored by employing a branch-and-prune (BP) algorithm.

A total order for V is a sequence r : N → V ∪ {0} with length |r| ∈ N (for which ri = 0 for
all i > |r|) such that, for each v ∈ V , there is an index i ∈ N for which ri = v. Given an order,
ri represents the vertex of V having rank i in the ordering. Let α(ri) be the counter of adjacent
predecessors of ri, for each ri ∈ V , that is:

α(ri) = card{(u, v) ∈ E | ∃j ∈ N : u = rj , v = ri and j < i}.

In terms of α, a discretization order in dimension 3 is an order r for which

C1 G[{r1, r2, r3}] is a clique,
C2 ∀i > 3, α(ri) ≥ 3,

where G[·] is the subgraph induced by a subset of vertices in V . Notice that we suppose that
assumption A2.3 is always satisfied.



Greedy algorithm for identifying discretization (input: G, K; output: r)

find a 3-clique C in the graph G

let n = 0
for (each vertex v ∈ C, in any internal order) do
let n++
let rn = v

end for

for (i = n+ 1, . . . , |V |) do

let W = V \

i−1⋃

j=1

{rj}

let u = argmax
v∈W

α(v)

if (α(u) ≥ 3) then
let ri = u

else

abort: no order exists with initial clique C

end if

end for

Exercise 1

Suppose we replace the discretization assumption A2 with the following assumption:

B2 ∀v ∈ V : v > K,

B2.2 {(v − 3, v), (v − 2, v), (v − 1, v)} ⊂ E,

B2.3 A(v − 3, v − 2, v − 1) > 0.

What impact has this change on the discretization order? Which is the strongest assumption,
the assumption A2 or the assumption B2? Find a small instance of the DGP in dimension 3 for
which either A2 or B2 is satisfied, while the other is not.

Exercise 2

Given G in dimension 3, what is the minimal cardinality for E that is necessary for V to admit
a discretization order?

1. Express this minimal cardinality in function of the cardinality n of V .

2. Give an example where the cardinality of E is the minimal one but the instance is not
discretizable.

Exercise 3

Given the two graphs G1 and G2 below, verify whether they represent instances of the DDGP in
dimension 2 (it is not necessary to verify explicitly whether assumption A2.3 is satisfied or not).
In case some of them do not belong to the DDGP class, verify whether there exists a different
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order for the vertices of the corresponding graph for which the discretization assumptions are
satisfied. The details about the two graphs follow:

G1 = (V1, E1) : |V1| = 4, E1 = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)} ,
G2 = (V2, E2) : |V2| = 4, E2 = {(1, 2), (2, 3), (2, 4), (3, 4)} .

Draw the two graphs by taking the vertices in the appropriate order.

Exercise 4

Apply the greedy algorithm for finding a discretization order for the following graph G = (V,E)
in dimension 2:

|V | = 6, E = {(1, 2), (1, 3), (1, 6), (2, 3), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} .

Exercise 5

Given the graph G = (V,E):

vertex adjacent vertices
1 2 3 7
2 1 3 4 5 7
3 1 2 5 7
4 2 5 6 7
5 2 3 4 6 7
6 4 5 7
7 1 2 3 4 5 6

verify whether the current vertex ordering allows for the discretization in dimension 3. If not,
apply the greedy algorithm for reordering the vertices of the graph. Select as initial clique the
triplet (2, 3, 5) and find one possible discretization order. Then, try again with the clique (5, 6, 7).
In the two obtained orders, how many times, for a given vertex, there are more than 3 reference
vertices?
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