
SE assignment Univ. Rennes 1

Virtual memory and address translation

Virtual memory allows our computer machines to benefit of a very large memory space to
be exploited by our running programs. The RAM memory, which is actually much smaller than
virtual memory, is supposed to contain only the data (organized in pages) that the computer
machine needs to access at a given time. All the other data are temporarily stored in the hard
drive, and they are retrieved only when a program asks for having access to them.

In this assignment, we will study in details some of the procedures that need to be executed
in the computer machine for an efficient management of the virtual memory. We will mainly
focus on the so-called mapping, which allows us to translate every virtual address of the virtual
memory, in a physical address of the RAM.

It is important to point out that, in modern computer machines, the mapping is partially
managed at hardware level by a dedicated circuit named “Memory Management Unit” (MMU),
which is (physically) placed next to the CPU. In this assignment, however, we will pretend that
it is rather our task to take care of all necessary actions, in order to better understand them.

We will study a virtual memory with the following properties:

• 14 bits are used for the virtual addresses;

• 12 bits are used for the physical addresses;

• 64 bytes are used for the page.

It is supposed that a 4-way associative mapping is implemented for the address translations.
Please make reference to the page table available in the last page of this document (only the

information necessary to perform our assignment is provided).

Question 1

Since the size of a page is 64 bytes, how many bits are necessary to guarantee the existence
of a unique address for every byte in the page? As a consequence, how many bits are left in
every (virtual and physical) address that actually represent the address of the page? It is in fact
important to point out that the virtual and physical addresses that are contained in these tables
concern pages, and not single memory locations (such as the address to an integer or a character
variable).

Question 2

How many possible virtual page addresses we have in our page table? Same question for the
physical page addresses.

Question 3

Since we have opted for a 4-way associative table, how many bits do we need to represent the
index of the virtual page address, and how many bits are necessary to represent the tag? The
index and the tag are related to two different methods the perform the address translations. Do
you remember which ones?

Question 4

Consider the virtual address 10111010001100 for a memory location. By considering the virtual
address of the page, and the fact that this address is valid in the table, construct the physical
address for the memory location.



Question 5

Consider the virtual page address 01110110. This address is not valid in the page table: when
the processor will try to access to its content, there will be a “page fault”. Is it necessary to free
some space in the RAM to load these data? Once the data are loaded, how to update the page
table?

Question 6

Now consider the virtual page address 11010010. It’s again a page fault. What is the difference
with the situation in the previous question? Please update the page table.

Question 7

Now consider the virtual page address 10111100. Page fault: is there enough space in the RAM
to load this page? Should we select a victim page? If yes, use the FIFO method (FIFO =
First-In First-Out). Suppose, for simplicity, that the time values in the original page table have
not changed since the beginning of our exercise: you can suppose that things are happening so
fast in the computer machine that these values, let’s say represented in milliseconds, have not
had the time to change yet. . .

Question 8

Now consider the virtual page address 10111001. In case a victim page needs to be selected, use
now the LRU method (LRU = Least Recently Used).



virtual page address valid 4-way association physical page address time since in RAM time since accessed

00111010 1 00 001100 6 5

01110110 0

10111000 1 00 101100 7 1

10111001 0

10111010 1 01 101101 3 3

10111011 1 10 101110 4 4

10111100 0

10111101 1 11 101111 6 6

10111110 0

11010001 1 00 110100 5 2

11010010 0

11011001 1 01 110101 9 1

11110000 0


