Antonio Mucherino

IRISA, INRIA and University of Rennes 1

Classification Day 1 CD1 November 10th, 2016

・ロット (雪) (日) (日)

Outline

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Consistent Biclustering

Intro to biclustering

Consistent Biclustering

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Consistent Biclustering

Intro to biclustering

Samples, features and vectors

Samples can be represented by vectors.

$$\mathbf{v} = \{\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3, \dots, \mathbf{v}^m\}$$

The generic component v^i of the vector **v** represent the *i*th feature of the sample.

For example, a feature can be:

- the expression of a gene
- the measure of a chemical component
- a pixel of a matrix representing an image

• . . .

・ロット (雪) (日) (日)

Consistent Biclustering for Feature Selections and Supervised Classifications Consistent Biclustering

Intro to biclustering

Biclustering

A set of samples can be represented by a set of vectors:

$$\{a_1,a_2,\ldots,a_n\}$$

or by a matrix containing all their features:

$${f A}=\left(egin{array}{ccccccc} a_1^1&a_2^1&\ldots&a_n^1\ a_1^2&a_2^2&\ldots&a_n^2\ a_1^3&a_2^3&\ldots&a_n^3\ \ldots&\ldots&\ldots&\ldots\ a_1^m&a_2^m&\ldots&a_n^m\end{array}
ight)$$

- Each column of the matrix represents a sample.
- Each row of the matrix represent a feature.

Consistent Biclustering

Intro to biclustering

Biclustering

Definition

Biclusters are sub-matrices of the matrix A.

Biclusters having different properties can be of interest:

- biclusters with constant values;
- biclusters with constant row or column values;
- biclusters with "coherent" values.

Definition

A partition in biclusters of A is referred to as **biclustering**.

The problem of finding a biclustering of a given set of data A can be reprint formulated as an optimization problem.

RISA

Consistent Biclustering

Intro to biclustering

Some notations

The matrix *A* represents our set of data.

- *j*, the generic index for the samples (*n* in total)
- *i*, the generic index for the features (*m* in total)
- a^{i} , the j^{th} column of the matrix A, i.e. the j^{th} sample
- *a_i*, the *ith* row of the matrix *A*, i.e. the *ith* feature
- *a*^j_i, the generic element of the matrix *A*, representing the *ith* feature of the *jth* sample

・ロット語・トロット

Consistent Biclustering

Intro to biclustering

Some notations

- S_r, class of samples (we can suppose it's a set of indices "j")
- $B_S = \{S_1, S_2, \dots, S_k\}$, classification of the samples
- F_r, class of features (we can suppose it's a set of indices "i")
- $B_F = \{F_1, F_2, \dots, F_k\}$, classification of the features
- $A[F_r, S_r]$ is a submatrix of A representing the bicluster (S_r, F_r)
- B = {(F₁, S₁), (F₂, S₂), ..., (F_k, S_k)} is a biclustering consisting of k biclusters.

Consistent Biclustering

Supervised biclusterings

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

Given a classification for the *samples*:

$$B_{\mathcal{S}} = \{S_1, S_2, \ldots, S_k\},\$$

we can define a classification B_F for the *features* by imposing:

$$i \in F_{\hat{r}} \iff \forall \xi \neq \hat{r} \quad \frac{1}{|S_{\hat{r}}|} \sum_{j \in S_{\hat{r}}} a_j^j > \frac{1}{|S_{\hat{\xi}}|} \sum_{j \in S_{\hat{\xi}}} a_j^j.$$

A **biclustering** can be generated by combining B_F and B_S .

・ロット (雪) (日) (日)

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

Let A be a training set.

$$\mathsf{A} = \begin{pmatrix} \mathsf{a}_1^1 & \mathsf{a}_2^1 & \mathsf{a}_3^1 & \mathsf{a}_4^1 & \mathsf{a}_5^1 \\ \mathsf{a}_1^2 & \mathsf{a}_2^2 & \mathsf{a}_3^2 & \mathsf{a}_4^2 & \mathsf{a}_5^2 \\ \mathsf{a}_1^3 & \mathsf{a}_2^3 & \mathsf{a}_3^3 & \mathsf{a}_3^3 & \mathsf{a}_3^3 \\ \mathsf{a}_4^4 & \mathsf{a}_2^4 & \mathsf{a}_3^4 & \mathsf{a}_4^4 & \mathsf{a}_5^4 \\ \mathsf{a}_5^1 & \mathsf{a}_5^2 & \mathsf{a}_5^3 & \mathsf{a}_5^5 & \mathsf{a}_5^5 \end{pmatrix}$$

We employ a supervised technique for constructing

- a classification B_F for the features in A;
- and hence, a biclustering \mathbb{B} for the matrix A.

・ロット (雪) (日) (日)

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

- What are the samples for which these features are mostly expressed?
- What is the class *S_r* of samples for which these features are mostly expressed?
- Let us suppose the **blue class** is mostly expressed by these features.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 & a_5^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 & a_5^4 \\ a_5^5 & a_5^5 & a_5^5 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

- What are the samples for which these features are mostly expressed?
- What is the class *S_r* of samples for which these features are mostly expressed?
- Let us suppose the **blue class** is mostly expressed by these features.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 & a_5^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 & a_5^4 \\ a_1^5 & a_2^5 & a_3^5 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

- What are the samples for which these features are mostly expressed?
- What is the class *S_r* of samples for which these features are mostly expressed?
- Let us suppose now the **red class** is mostly expressed by these features.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 & a_5^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 & a_5^4 \\ a_1^5 & a_2^5 & a_3^5 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

- What are the samples for which these features are mostly expressed?
- What is the class *S_r* of samples for which these features are mostly expressed?
- Let us suppose now the **red class** is mostly expressed by these features.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 & a_5^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 & a_5^4 \\ a_1^5 & a_2^5 & a_3^5 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

By continuing and properly sorting the rows and the columns of *A*, we can identify a *biclustering* of *A*.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 & a_5^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 & a_5^4 \\ a_1^5 & a_5^5 & a_5^5 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

By continuing and properly sorting the rows and the columns of *A*, we can identify a *biclustering* of *A*.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 & a_5^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 & a_5^4 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ a_1^5 & a_5^5 & a_5^5 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Constructing biclusterings

By continuing and properly sorting the rows and the columns of *A*, we can identify a *biclustering* of *A*.

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_4^1 & a_3^1 & a_5^1 \\ a_1^3 & a_2^3 & a_4^3 & a_3^3 & a_5^3 \\ a_1^4 & a_2^4 & a_4^4 & a_4^3 & a_5^4 \\ a_1^2 & a_2^2 & a_4^2 & a_3^2 & a_5^2 \\ a_1^5 & a_5^5 & a_5^4 & a_5^5 & a_5^5 \end{pmatrix}$$

Consistent Biclustering

Supervised biclusterings

Performing supervised classifications

What is the point in constructing a biclustering?

Consistent Biclustering

Supervised biclusterings

Performing supervised classifications

What is the point in constructing a biclustering?

Consistent Biclustering

Supervised biclusterings

Performing supervised classifications

What is the point in constructing a biclustering?

Consistent Biclustering

Supervised biclusterings

Performing supervised classifications

What is the point in constructing a biclustering?

Consistent Biclustering

Consistent biclustering

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Consistent Biclustering

Consistent biclustering

Verifying the classification technique on A

The given procedure is able to perform the following steps:

$$B_S \longrightarrow B_F \longrightarrow \hat{B}_S.$$

Definition

If $B_S \equiv \hat{B}_S$, then the corresponding biclustering \mathbb{B} is **consistent**.

Note that:

- supervised classifications should be performed only when the found biclustering is consistent;
- the verification on the consistency of the validation set can give clues about the correctness of the classifications.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Consistent Biclustering

Consistent biclustering

Consistent biclusterings and real data

Validation sets from real-life applications usually do not admit consistent biclusterings.

How to overcome this problem?

A maximal subset of features can be selected so that the corresponding biclustering is consistent.

Why to maximize the number of selected features?

This is done in order to preserve information in the set of data.

What if our data are noisy?

We introduce the concepts of α -consistent and β -consistent biclusterings.

・ロット (雪) (日) (日)

Consistent Biclustering

Consistent biclustering

A feature selection problem (consistency)

Find the maximal subset of features such that the corresponding *biclustering* is *consistent*:

$$\max_{x}\left(f(x)=\sum_{i=1}^{m}x_{i}\right)$$

subject, $orall \hat{r}, \xi \in \{1, 2, \dots, k\}, \hat{r}
eq \xi, j \in S_{\hat{r}}$, to:

where:

- x_i, binary decision variable, it is 0 if the *ith* feature is not selected;
- f_{ir} , binary parameter, it is 1 if the *i*th feature belongs to the *r*th bicluster.

Consistent Biclustering

Consistent biclustering

A feature selection problem (α -consistency)

And if the data are noisy? Feature selection for α -consistent biclustering:

$$\max_{x}\left(f(x)=\sum_{i=1}^{m}x_{i}\right)$$

subject, $orall \hat{r}, \xi \in \{1, 2, \dots, k\}, \hat{r} \neq \xi, j \in S_{\hat{r}}$, to:

$$\frac{\sum_{i=1}^{m} a_{ij} f_{i\hat{t}} x_i}{\sum_{i=1}^{m} f_{i\hat{t}} x_i} > \alpha_j + \frac{\sum_{i=1}^{m} a_{ij} f_{i\xi} x_i}{\sum_{i=1}^{m} f_{i\xi} x_i}$$

where $\alpha_j > 0$.

・ロット (雪) () () () ()

Consistent Biclustering

Consistent biclustering

A feature selection problem $(\beta$ -consistency)

And if the data are noisy? Feature selection for β -consistent biclustering:

$$\max_{x}\left(f(x)=\sum_{i=1}^{m}x_{i}\right)$$

subject, $orall \hat{r}, \xi \in \{1, 2, \dots, k\}, \hat{r} \neq \xi, j \in S_{\hat{r}}$, to:

$$\frac{\sum_{i=1}^{m} a_{ij} f_{i\hat{r}} x_i}{\sum_{i=1}^{m} f_{i\hat{r}} x_i} > \beta_j \times \frac{\sum_{i=1}^{m} a_{ij} f_{i\xi} x_i}{\sum_{i=1}^{m} f_{i\xi} x_i}$$

where $\beta_j > 1$. It is supposed here that all a_{ij} 's are positive.

・ロット (雪) (日) (日)

Consistent Biclustering

Consistent biclustering

Problem complexity

Feature selection for

- consistent biclustering,
- α -consistent biclustering, and
- β-consistent biclustering

is NP-hard.

- Exponential complexity for exact methods;
- Two heuristic approaches were previously proposed in the literature;
- We presented a new VNS-based heuristic.

・ロット (雪) (日) (日)

Consistent Biclustering

A bilevel reformulation

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering

A bilevel reformulation

A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Consistent Biclustering

A bilevel reformulation

Analyzing the problem constraints

What do the denominators of the constraints represent?

$$\frac{\sum_{i=1}^{m} a_{ij}f_{i\hat{r}}x_i}{\sum_{i=1}^{m} f_{i\hat{r}}x_i} > \frac{\sum_{i=1}^{m} a_{ij}f_{i\xi}x_i}{\sum_{i=1}^{m} f_{i\xi}x_i}$$

y_{r̂} = Σ^m_{i=1} f_{ir̂}x_i is the number of selected features in (F_{r̂}, S_{r̂});
y_ξ = Σ^m_{i=1} f_{iξ}x_i is the number of selected features in (F_ξ, S_ξ).

What if we substitute the denominators with real variables?

Consistent Biclustering

A bilevel reformulation

Analyzing the problem constraints

Let us introduce new decision variables:

• $y_r, r \in \{1, 2, ..., k\}$, real.

The constraints of the optimization problem can be rewritten as:

$$\frac{1}{y_{\hat{r}}}\sum_{i=1}^m a_{ij}f_{i\hat{r}}x_i > \frac{1}{y_{\xi}}\sum_{i=1}^m a_{ij}f_{i\xi}x_i.$$

For example, we can suppose that 700 features are selected in the first bicluster, while 300 features are selected in the second one.

Consistent Biclustering

A bilevel reformulation

Analyzing the problem constraints

Let us introduce new decision variables:

• $y_r, r \in \{1, 2, ..., k\}$, real.

The constraints of the optimization problem can be rewritten as:

$$\frac{1}{700}\sum_{i=1}^m a_{ij}f_{i\hat{r}}x_i > \frac{1}{300}\sum_{i=1}^m a_{ij}f_{i\xi}x_i.$$

For example, we can suppose that 700 features are selected in the first bicluster, while 300 features are selected in the second one.

Consistent Biclustering

A bilevel reformulation

Analyzing the problem constraints

Let us introduce new decision variables:

• $y_r, r \in \{1, 2, ..., k\}$, real.

The constraints of the optimization problem can be rewritten as:

$$\frac{1}{7}\sum_{i=1}^{m}a_{ij}f_{i\hat{r}}x_{i} > \frac{1}{3}\sum_{i=1}^{m}a_{ij}f_{i\xi}x_{i}.$$

We can of course modify the values while keeping the proportions ... 700,300,..., as well as 7,3,...

Consistent Biclustering

A bilevel reformulation

Analyzing the problem constraints

Let us introduce new decision variables:

• $y_r, r \in \{1, 2, ..., k\}$, real.

The constraints of the optimization problem can be rewritten as:

$$\frac{1}{0.7}\sum_{i=1}^{m}a_{ij}f_{ir}x_i > \frac{1}{0.3}\sum_{i=1}^{m}a_{ij}f_{i\xi}x_i.$$

Each variable y_r represents the percentage of selected features in the biclusters $(F_{\hat{r}}, S_{\hat{r}})$ and (F_{ξ}, S_{ξ}) .

Consistent Biclustering

A bilevel reformulation

Introducing a new penalty function

We introduce the following function:

$$\boldsymbol{c}(\boldsymbol{x},\hat{\boldsymbol{r}},\xi) = \sum_{j\in\mathcal{S}_{\hat{\boldsymbol{r}}}} \left| \frac{\sum_{i=1}^{m} a_{ij}f_{i\xi}\boldsymbol{x}_{i}}{\sum_{i=1}^{m} f_{i\xi}\boldsymbol{x}_{i}} - \frac{\sum_{i=1}^{m} a_{ij}f_{i\hat{\boldsymbol{r}}}\boldsymbol{x}_{i}}{\sum_{i=1}^{m} f_{i\hat{\boldsymbol{r}}}\boldsymbol{x}_{i}} \right|_{+},$$

where:

- |·|₊ represents the function which returns its argument if it is positive, and it returns 0 otherwise;
- c depends upon x and on one pair of biclusters for which $\hat{r} \neq \xi_{\text{MRISA}}$

The value of this function is strictly positive if and only if at least one unit of the constraints is not satisfied.

Consistent Biclustering

A bilevel reformulation

Bilevel program

Our bilevel reformulation:

$$\min_{\mathbf{y}} \left(g(\mathbf{x}, \mathbf{y}) = \sum_{r=1}^{k} \left[(1 - \mathbf{y}_r) + \sum_{\xi=1: \xi \neq r}^{k} c(x, r, \xi) \right] \right)$$

subject to:

$$\mathbf{x} = \arg \max_{x} \left(f(x) = \sum_{i=1}^{m} x_{i} \right)$$

subject to
$$\begin{cases} \sum_{i=1}^{m} f_{ir} x_{i} = \lfloor y_{r} \sum_{i=1}^{m} f_{ir} \rfloor \quad \forall r \in \{1, \dots, k\} \\ \frac{1}{y_{r}} \sum_{i=1}^{m} a_{ij} f_{ir} x_{i} > \frac{1}{y_{\xi}} \sum_{i=1}^{m} a_{ij} f_{i\xi} x_{i}, \\ \sum_{r=1}^{k} y_{r} \leq 1. \end{cases}$$

 \Rightarrow

The same reformulation can be applied for α and β -consistency,

Consistent Biclustering

A VNS-based heuristic

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Consistent Biclustering

A VNS-based heuristic

Variable Neighborhood Search (VNS)

SIRISA

Consistent Biclustering

A VNS-based heuristic

A heuristic algorithm

We developed a **VNS**-based heuristic for optimizing the outer function:

g(x, y)

- we perform a random search on the variables y_r
- the variables x_i are computed, at each iteration of the heuristic, by solving exactly the inner problem;
- therefore, the search domain of our heuristic corresponds to the k variables y_r only, where k is the number of biclusters.

Consistent Biclustering

A VNS-based heuristic

A heuristic algorithm

```
let iter = 0:
let x_i = 1, \forall i \in \{1, 2, \dots, m\};
let y_r = \sum_i f_{ir}/m, \forall r \in \{1, 2, ..., k\};
let range = starting range;
while (g(x, y) > 0 \text{ and } range \leq max_range) do
   let iter = iter + 1:
   solve the inner optimization problem (linear);
   if (g(x, y) > 0) then
       increase range:
       if (q(x, y) has improved) then
          let range = starting range;
       end if
       let r' = random in \{1, 2, ..., k\};
       choose randomly y_{r'} in [y_{r'} - range, y_{r'} + range];
       let r'' = random in \{1, 2, \dots, k\} such that r' \neq r'';
       set y_{r''} so that \sum_r y_r = 1;
   end if
end while
```


Consistent Biclustering

A VNS-based heuristic

An implementation in AMPL+CPLEX

```
repeat while (stop < 1)
  printf "solving ... (";
  for {k in 1...r}
     printf "%lf ",nf[k];
   };
  printf ") [tot = %d]\n",nf tot;
   # solving the inner problem with CPLEX
   solve;
  display numb_features;
   let count := 0;
   for {i in 1..m}
      if (x[i] \ge 0.5) then
         let count := count + 1;
      };
   };
  display count;
   # checking the consistency
   let cons := 0;
   let err ·= 0.
```


< ロ > < 同 > < 回 > < 回 > :

Applications

Gene analysis

Consistent Biclustering

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

ApplicationsGene analysis

Wine fermentations

• □ > • (□) • • □ > • □ >

Applications

Gene analysis

Analyzing microarray data

Microarrays in biology are used for studying the expression of genes under different conditions.

Microarray data can be represented by a matrix, for which we can identify a suitable biclustering:

Applications

Gene analysis

ALL-AML dataset

Consists of samples from patients diagnosed with two different diseases:

- acute lymphoblastic leukemia (ALL);
- acute myeloid leukemia (AML).

- Training set: 38 samples: 27 ALL and 11 AML;
- Validation set: 34 samples: 20 ALL and 14 AML;
- Number of features: 7129.

• □ > • (□) • • □ > • □ >

Applications

Gene analysis

Computational experiments

Applying the heuristic algorithm for finding consistent, α -consistent and β -consistent biclusterings.

α	f(x)	err					
0	7081	2					
10	7076	2					
20	7075	2					
30	7072	2					
40	7068	2					
50	7061	1					
60	7046	1					
70	6954	1					
	-						

f(x)	err	
7011	2	
6984	2	
6946	1	
6702	1	
5914	1	
5072	1	
4524	0	
3932	0	
	f(x) 7011 6984 6946 6702 5914 5072 4524 3932	

・ロット (雪) (日) (日)

err is the number of errors obtained while classifying the samples of the validation set accordingly to the found biclustering.

> * data are here scaled to avoid the presence of negative *a_{ij}* values. Total number of features: 7129.

Applications

Wine fermentations

Consistent Biclustering

- Intro to biclustering
- Supervised biclusterings
- Consistent biclustering
- A bilevel reformulation
- A VNS-based heuristic

2 Applications

- Gene analysis
- Wine fermentations

• □ > • (□) • • □ > • □ >

Applications

Wine fermentations

Predicting problematic wine fermentations

Set of data obtained from a winery in Chile's Maipo Valley, which is the result of 24 measurements of industrial vinifications of Cabernet sauvignon.

- normal fermentations (9)
- slow fermentations (10)
- stuck fermentations (5)

Training set:

- Number of compounds: 30;
- Number of measurements per compound: 8 (before 150 hours);
- Total number of features: 240.

・ロット (雪) (日) (日)

Applications

Wine fermentations

Predicting problematic wine fermentations

Applying the heuristic algorithm for finding consistent, α -consistent and β -consistent biclusterings.

α	0.00	0.10	0.20	0.40	0.50	0.70	1.00
f(x)	192	192	192	190	190	170	149
β	1.00	1.01	1.02	1.04	1.05	1.07	1.10
f(x)	192	191	186	186	180	177	165

The analysis showed that:

- important compounds: sugar and lactic, malic, succinic, and tartaric organic acids;
- not important compounds: *arginine*, *proline*, *glutamic acid*, *glutamine*, and *treonine*.

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

Thanks everybody for your participation!

Some bibliography

- A. Mucherino, L. Liberti, A VNS-based Heuristic for Feature Selection in Data Mining. In: "Hybrid Meta-Heuristics", Studies in Computational Intelligence 434, E-G. Talbi (Ed.), 353–368, 2013.
- A. Mucherino, Extending the Definition of β-Consistent Biclustering for Feature Selection, IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS11), Workshop on Computational Optimization (WCO11), Szczecin, Poland, 269–274, 2011.
- S. Busygin, O.A. Prokopyev, P.M. Pardalos, Feature Selection for Consistent Biclustering via Fractional 0–1 Programming, Journal of Combinatorial Optimization 10, 7–21, 2005.

Thanks everybody for your participation!

To be continued ...

Thanks!

・ロト ・聞 ト ・ヨ ト ・ヨ ト