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Introduction

» Gesture interaction exploits the and of users

 User’s knowledge of the real world

Tilt Brush

> A can be considered as a meaningful and intentional movement

 Encoded information based on the spatid, pathic, Jymbolic and affective characteristics [Mitra et al. 2007]
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Gesture Classification

Feature-based Template-based

» Gesture characterization through a set » Gesture characterization through a set of
of distinctive features representative gestures

 Mean speed, curvature... [Chen et al. 2013]

> Error minimization based on a distance function

» A broad range of alternatives * Mean Square Error [Woobroock et al. 2007]
 Hidden Markov Models [Chen et al. 2013] e Angular Inverse Cosinus [Li 2010]
 Nearest Neighbors [Lai et al. 2012] * Dynamic Time Warping [Liu et al. 2009]

e Support Vector Machines [Kela et al. 2006]
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Sparse Representation
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Sparse Representation
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Sparse Representation-based Gesture Classification
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Representation of Human Motion

» 3D rotation invariant sparse representation [Barthelemy et al. 2014]

» The dictionary is invariant to:

e Scale M
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Contributions

»Gesture Normalization and Resampling
» Classification Strategies
» Dictionary Learning Strategies

» Evaluation

e Off-line and On-line
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Gesture Normalization and Resampling

» Decrease gesture variability in terms of speed and position

» Transform the gesture motion into a speed invariant domain

e Curvi-linear abscissa

» The centroid of the gesture is removed
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Gesture Classification Strategies

Feature-based Template-based
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Gesture Classification Strategies
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Sparse Coding Algorithm
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Dictionary (®) Learning Strategies

Semi-supervised Learning Supervised Learning

Data Data

l Labels

P Lo !

‘ Labels - Data, = | Data, @ .. | Data,
|- -4 l I |
D, D, | L Dy Py D, L Dy

Variable number of patterns Fixed number of patterns

Ferran Argelaguet - 21/06/2017 - 3rd Classification Day



Overview
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Off-Line Evaluation

» 6DMG Gesture Database [Chen et al. 2013]
* 5600 samples from 28 users (7 left-handed)
* 20 different gestures
* 6 gesture classes (only five are considered)

» Dictionary Parametrization
* Sparse components — 1 Component
e Gesture sub-sampling - 60 Samples
* Dictionary Patterns —5 to 10 Patterns

» Conditions
* User Dependent vs User Independent
e Supervised DLA vs Semi-Supervised DLA
* Class Recognition vs Total Recognition

6DMG Database

Xshape Circle Circle
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Off-Line Evaluation Results

» User Dependent vs User Independent
* Higher recognition rate for the user dependent condition
* No impact on users’ dominant hand

3D Sparse Representation

» Supervised vs Semi-Supervised Supervised Semi-Supervised
* No significant differences Class Total Class Total
UD | 99.74% | 99.55% | 99.75% | YR.22%
L UL | 99.08% | 97.73% | 99.33% | 97.82%
» Class vs Total Classification - .

* Lower recognition rate for the total condition
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Off-Line Evaluation Results (Il)

» Confusions between the Swipe and VSphape for the user independent condition
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Real-Time User Evaluation

» Evaluate the gesture recognition system in real time conditions

* Button-based segmentation

» User Independent Scenario
* Precomputed dictionary based on the 6DMG database

» User Dependent Scenario
* Design of six gestures

* The dictionary is trained by the user
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Real-Time User Evaluation Results
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User Defined Gestures
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» Need of robust and efficient gesture recognition classifiers

e Error-prone motion-based interfaces

» Sparse-based gesture classification algorithm
* Speed, scale and rotation invariances
* Reduced number of gesture samples to train the classifier
e Off-line and real-time experimental validation

» Future perspectives
* Additional evaluations with other classification algorithms and gesture databases
* Support segmentation and additional degrees of freedom
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