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Time Series Classification
Time series...
A time series x is a set of values x(1), x(2), . . . , x(L), x(i) ∈ R, ordered in time.

...Classification
Supervised task :
We are given a training set T = {(xk , yk), 1 ≤ k ≤ N}, where

I xk is a time series ∈ RL

I yk is a label associated to xk , yk ∈ {1, . . . , C}
Aim : Learn a relationship between the time series in T and their labels to
predict unknown labels of testing time series.
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Example of time series classification
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Many other applications:
Satellite Image Time Series, gesture recognition, finance, music ...
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Main approaches for time series classification

1 Distance-based approaches
I rely on distance measures between raw time series

2 Shapelet-based approaches
I rely on shapelets

3 Dictionary-based approaches
I Bag-of-Words

4 Enhanced Bag-of-Words
5 Ensemble approaches

You can find a good recent review about TSC in [Bagnall et al., 2016]
Website : timeseriesclassification.com, with source codes and more than
80 datasets
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1 Distance-Based Time Series Classification
Euclidean Distance
Dynamic Time Warping
Global Alignement Kernel

2 Shapelet-Based Time Series Classification

3 Dictionnary-based approaches

4 Efficient kernels for time series classification

5 Conclusion
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Euclidean Distance

X = x1, . . . , xn and Y = y1, . . . , yn two time series.

d(X ,Y )2 =
n∑

i=1
(xi − yi)2
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X Easy to compute
X Compatible with kernel machines

× Same lengths
× Shifts, warpings
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Dynamic Time Warping [Sakoe and Chiba, 1978]

Measure based on the best alignment between two time series
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Dynamic Time Warping

x4 d4,5
x3
x2 d2,1
x1 d1,1 d1,2

y1 y2 y3 y4 y5

di,j = (xi − yj)2
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Dynamic Time Warping
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Dynamic Time Warping
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The best alignment is the one leading to the minimum score, this score being the
DTW
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Dynamic Time Warping

x4 d4,5
x3 π2
x2 d2,1 π1
x1 d1,1 d1,2

y1 y2 y3 y4 y5

S1 =
∑

i,j∈π1

di,j

S2
2 =

∑
i,j∈π2

di,j

The best alignment is the one leading to the minimum score, this score being the
DTW

X Shifts, warpings
X Good performance

× Complexity
× Not a proper distance
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Dynamic Time Warping
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ED versus DTW
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Win/Tie/Loose : 50/4/31
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Global Alignment Kernel - GAK [Cuturi, 2011]

x4 k4,5
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y1 y2 y3 y4 y5

ki,j = e−(xi−yj )2
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y1 y2 y3 y4 y5

ki,j = e−(xi−yj )2

DTW is score of the best path
GAK considers all possible paths :

GAK (X ,Y ) =
∑
π∈Π

∏
(i,j)∈π

ki,j

X Shifts, warpings
X Good performance
X Can be used in kernel machines

× Complexity
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Shapelets

First introduced in 2009 in [Ye and Keogh, 2009]
A shapelet is a subsequence (of a time series) that is representative of a class
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Shapelets

First introduced in 2009 in [Ye and Keogh, 2009]
A shapelet is a subsequence (of a time series) that is representative of a class
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Shapelet s1 is a representative of class 1 if
distances between s1 and time series of class 1 are low
distances between s1 and time series of other classes are high
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Distance between a shapelet and a time series
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Distance between a shapelet and a time series
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Distance between a shapelet and a time series
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Distance between a shapelet and a time series
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Distance between a shapelet and a time series

This shapelet represents class 1:
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Bad or good shapelet ?

A bad shapelet ?
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Shapelets

Images taken from [Ye and Keogh, 2009]
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Shapelets

Images taken from [Ye and Keogh, 2009]
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Shapelet transform [Hills et al., 2014]

This approach is based on 3 steps :
1 Extract the K best shapelets (information gain criterion)
2 Transform each training time series into a K-dimensional vector

M = M1, . . . ,MK , where Mi is the distance between the time series and the
i th shapelet

3 Train a classifier on the transformed series

Picture taken from [Grabocka et al., 2014]
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Learning shapelets [Grabocka et al., 2014]

Based on the shapelet transform principle
BUT, shapelets are learned via logistic regression
Given a set of weights w0, . . . ,wK and a set of K shapelets

Ŷi = w0 +
K∑

k=1
wkMi,k

L(Yi , Ŷi) = −Yi ln(g(Ŷi))− (1− Yi)ln(1− g(Ŷi))

Objective : find K shapelets and K weights such that this loss is minimized
→ gradient descent
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Comparison between shapelet-based methods
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Shapelet transform VS 1NN-DTW
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Bag-of-Words framework

The BoW framework is the following
→ → → [codewords]

↓ →

Time Series →
Selection of
Keypoints

(or windows)
→

Description of
Keypoints

(or windows)
→ Bag-of-Words

Representation → Classifier
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Feature extraction over windows

Features that have been considered in the literature :
I Mean, slope, variance, extrema, starting time [Baydogan et al., 2013]
I SAX symbols (quantized mean) [Lin et al., 2012, Senin and Malinchik, 2013]
I Fourier Coefficients [Schäfer, 2014]
I Wavelet coefficients [Wang et al., 2013]
I Temporal-SIFT descriptors [Bailly et al., 2015]

These features are then used in a Bag-of-Word approaches
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Bag-of-Temporal SIFT Words (BoTSW)

Joint work with Adeline Bailly, Romain Tavenard (Rennes 2) and Thomas Guyet
(IRISA/AgroCampus)[Bailly et al., 2015]

BoTSW can be outlined by the following scheme:

→ → → [codewords]
↓ →

Time Series → Extraction of
Keypoints → Description of

Keypoints → Bag-of-Words
Representation → Classifier
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Extraction of Keypoints - Dense Extraction

Keypoints are extracted densely in space.
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Outline

BoTSW can be outlined by the following scheme:

→ → → [codewords]
↓ →

Time Series → Extraction of
Keypoints → Description of

Keypoints → Bag-of-Words
Representation → Classifier
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BoTSW - Feature vectors

Parameters: nb, the number of blocks (4) and a, the block’s size (2).
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BoTSW - Feature vectors

Parameters: nb, the number of blocks (4) and a, the block’s size (2).

This description is done for the original time series S(t) and for

L(t, σ) = G(t, ks
0 σ) ∗ S(t), 0 ≤ s ≤ smax
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Outline

BoTSW can be outlined by the following scheme:

→ → → [codewords]
↓ →

Time Series → Extraction of
Keypoints → Description of

Keypoints → Bag-of-Words
Representation → Classifier
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Generation of the dictionary

k-means to generate the codewords (here k = 6)
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BoTSW - Feature vectors assignment
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Bag-of-Words Representation
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Signed-Square-Root (SSR)
TF-IDF
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BOTSW versus DTW
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BOTSW versus other BoW approaches
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From BoW to kernels

Joint work with Romain Tavenard, Adeline Bailly (Rennes 2), Laetitia Chapel
(IRISA), Benjamin Bustos (Univ. of Chile)[Tavenard et al., 2017]

Up to now,
feature vectors are extracted from time series
these vectors are quantized into words
time series are represented as histogram of occurences of words

→ loss of information in the quantization
→ temporal information is lost

Design of kernels between sets of feature vectors
no quantization of feature vectors
integrate temporal information
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Signature Quadratic Form Distance

Let X = {xi , xi ∈ Rd}i=1,...,n be a time series (a set of feature vectors)
Let Y = {yi , yi ∈ Rd}i=1,...,m be a time series (a set of feature vectors)
The SQFD between X and Y is defined as :

SQFD(X ,Y )2 = 1
n2

n∑
i=1

n∑
j=1

k(xi , xj)+ 1
m2

m∑
i=1

m∑
j=1

k(yi , yj)−
2

n ·m

n∑
i=1

m∑
j=1

k(xi , yj),

where k(., .) is a local kernel between feature vectors (gaussian kernel for instance)
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Signature Quadratic Form Distance

Let X = {xi , xi ∈ Rd}i=1,...,n be a time series (a set of feature vectors)
Let Y = {yi , yi ∈ Rd}i=1,...,m be a time series (a set of feature vectors)
The SQFD between X and Y is defined as :

SQFD(X ,Y )2 = 1
n2

n∑
i=1

n∑
j=1

k(xi , xj)+ 1
m2

m∑
i=1

m∑
j=1

k(yi , yj)−
2

n ·m

n∑
i=1

m∑
j=1

k(xi , yj),

where k(., .) is a local kernel between feature vectors (gaussian kernel for instance)
It can be kernelized into

KSQFD(X ,Y ) = e−γf SQFD(X ,Y )2 .
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Incorporating time in the SQFD kernel

The more direct way is to integrate time in the local kernel

k(xi , yj) = e−γl ‖xi−xj‖2 ,

that now becomes :
kt(xi , yj) = e−γt (tj−ti )2 · k(xi , yj).
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Classification performance
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BoW VS Temporal kernel
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Temporal kernel VS other approaches
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1 Distance-Based Time Series Classification

2 Shapelet-Based Time Series Classification

3 Dictionnary-based approaches

4 Efficient kernels for time series classification

5 Conclusion
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Conclusion

Conclusion
Three main familiy of approaches for TSC :

I Distance-based
I Shapelet-based
I Dictionnary-based

Shapelet and dictionnary-based are more accurate...
... but there is not A METHOD better than all others
Dictionnary-based methods can be improved by temporal kernels
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Questions?
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