deep learning, unsupervised learning
and image retrieval

Yannis Avrithis
Inria Rennes-Bretagne Atlantique

Rennes, October 2017

I d

: informatiques #Fmathématiques

image retrieval challenges

image retrieval challenges

e scale

e viewpoint o
. e distinctiveness
e occlusion

e distractors
o clutter

e lighting

image classification challenges

image classification challenges

number of instances

e scale

e viewpoint texture/color

e occlusion e pose

e clutter deformability

e lighting intra-class variability

data-driven approach

data-driven approach

| feature extraction |

representation

data-driven approach

| feature extraction |

representation

N2

parameters classifier

data-driven approach

parameters — model

“dog

cat”

data-driven approach

parameters ———|

model

—— representation

“dog

cat

data-driven approach

parameters ———|

model

—— representation

data-driven approach

parameters — model —— representation

neural networks
convolution
image retrieval

graph-based methods

overview

neural networks

logistic regression
e class activations

ap = w,;rx—i- bk

e posterior class probabilities: softmax

yr(x) = softmaxy(a) : =

logistic regression
e class activations

ap = W]—IC—X-F bk

e posterior class probabilities: softmax

f e
X) = softmaxy(a) : =
Yr(x) xi,(a) 5 e
10 |- B
0.8 |

ah | 0.6

0 — 04 |
-5 - 0.2

| | | | 0 | |

e class activations

e posterior class probabilities: softmax

yr(x) = softmaxy(a) : =

logistic regression

ar, = wj X + b, = In p(x|C;.)p(C)

0.2

0.4

0.6

0.8

0.8
0.6
0.4
0.2

0.2 0.4 06 0.8

binary logistic regression

e activation

a=w x+b

e posterior probability of class C;: sigmoid

1
yx) = o(@) = 1
1
0.5 - -
0 | | | |

binary logistic regression

e activation (xC1)p(C)
p(x|C2)p(Ca)

e posterior probability of class C;: sigmoid

y(x) = 0(a) i = ——— = p(Cifx)

0.5 -

cross-entropy loss function

e input samples X = (z,,4), activations A = (ax)
e output class probabilities Y = (ynk), ynk = softmaxy(a,)
o target variables T = (tpx), tnx = 1[xn € C)

cross-entropy loss function

input samples X = (z,4), activations A = (ank)

output class probabilities Y =

target variables T = (t,),

average cross-entropy

—Inp(T

(ynk)v Ynk = SOftman(an)

tok =]l[Xn S Ck]

= _*Zztnklnynk

cross-entropy loss function

input samples X = (z,4), activations A = (ank)
output class probabilities Y = (ynx), Ynk = softmaxy(ay,)
target variables T = (t,1), tor = 1[x, € Cgl

average CrOSS—entrOpy
lnp = _7zztnklnynk

gradient
oL

0A N(
by increasing a class activation, the loss decreases if the class is
correct, and increases otherwise

Y- T)

toy example

ooo
.'. © o O
e __© P
% .-".... “{... Q
oo o cor 8° ﬁ omM
% Joedifee ®
o
oQH " 8 o A %&@n
ouo loo# 0088

credit: Andrej Karpathy

toy example

credit: Andrej Karpathy

two-layer network

e describe each sample with a feature vector obtained by a nonlinear
function

e model this function after a (binary) logistic regression unit

two-layer network

e describe each sample with a feature vector obtained by a nonlinear
function

e model this function after a (binary) logistic regression unit

e layer 1 activations — “features”

z=h(W/]x+b)

two-layer network

describe each sample with a feature vector obtained by a nonlinear
function

model this function after a (binary) logistic regression unit

layer 1 activations — “features”
z=h(W/]x+b)
layer 2 activations — class probabilities

y = softmax(W3 z + by)

activation function h

sigmoid (element-wise)

1

(1) = 1=

0.5 - —

activation function h

sigmoid (element-wise) rectified linear unit (ReLU)
o(r) = Tre=s relu(z) = [z]+ = max(0, z)
1
4 —
0.5 - .

2 —
0 0 I | |
2 4 4 -2 0 2 4

optimization

e input samples X = (z,,4), output class probabilities Y = (y,,x)
o target variables T = (t,1)
* network parameters 6 = ((W1,b1), (W3, b))

optimization

input samples X = (z,4), output class probabilities Y = (y,x)
target variables T = (¢,1)
network parameters @ = ((W1,b1), (W2, b))

loss function

L=f(X,T;0) *——Zztnklnynk‘i‘ (W7 + W2)

optimization

input samples X = (z,4), output class probabilities Y = (y,x)

target variables T = (¢,1)
network parameters 8 = ((W1,b;), (W2, bg))

loss function

L:f(X7T§0):

_% Zztnk lnynk
n k

+

Do | >

(WLl + [1W2ll7)

data term

optimization

input samples X = (z,4), output class probabilities Y = (y,x)
target variables T = (¢,1)
network parameters 8 = ((W1,b;), (W2, bg))

loss function

+

1 A
L=f(X.T:0) =~ > >ty [H 5 (WLl + [W2]7)
n k

regularization term
data term

optimization

input samples X = (z,4), output class probabilities Y = (y,x)
target variables T = (¢,1)
network parameters 8 = ((W1,b;), (W2, bg))

loss function

+

1 A
L=f(X.T:0) =~ > >ty [H 5 (WLl + [W2]7)
n k

regularization term
data term

optimization
0" = arg max f(X,T;0)

optimization

input samples X = (z,4), output class probabilities Y = (y,x)
target variables T = (¢,1)
network parameters @ = ((W1,b1), (W2, b))

loss function

+

A
3 IWallf + W2l)

L= f(X,T,O) = —%Zztnklnynk
n k

regularization term
data term

optimization
0" = arg max f(X,T;0)

gradient descent
of

t+1 _ gt 9]
0 =0 680

(X, T; 0"

toy example

toy example

toy example

toy example

toy example

toy example

toy example

toy example

toy example

toy example

computing the gradient

e chain rule: if f is differentiable at x and g is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) - Df(x)

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) - Df(x)

e how to use it:

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) - Df(x)

e how to use it:

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) { Df(x)

e how to use it: /

oL oL 8X2

8x1 aXQ 8}(1

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) | Df(x)
e how to use it: /
oL oL 8X2

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) - Df(x)

e how to use it: \
8L | 8L) 8X2
8x1 ~ aXQ 8}(1

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) - Df(x)
e how to use it:
8L _ 8L) 8X2
8x1 - 3){2 8}(1
dX1 = ng . Df(Xl)

9

H—EO-1®) ®

computing the gradient

e chain rule: if f is differentiable at x and ¢ is differentiable at
y = f(x), then g o f is differentiable at x and

D(go f)(x) = Dg(y) - Df(x)
e how to use it:
8L _ 8L) 8X2
8x1 - aXQ 8}(1
dX1 = ng . Df(Xl)

9

f
O =0
dxy dxa

variable sharing

b b

variable sharing

S

—®
—

backpropagation

@

target

bias

NORON®
5 ®

weight

®)

bias

@)

weight

B

input

backpropagation

O—0—0—0

target

|A1 = dOt(X, Wl) + b1|

bias ffine weight

b

input

backpropagation

A1 = dOt(X, Wl) +b1
7= (0, 11 @—0)—0)—@

target

relu

bias affine weight

input

backpropagation

A1 = dOt(X, Wl) + b1
7o, Ay @—C—O—@
|A2 = dot(Z, W) + by target

®)

bias

@)

affine Weight

input

backpropagation
A1 = dOt(X, Wl) + b1

Z =max(0, A;) @ (C) @ @
Ay = dOt(Z7 Wz) + by target

E = exp(As)

Y = E/sum; (E)

C' = —sum; (T * log(Y)) softmax

D = sumy(C)/N

B—O—O—

bias affine Uweight

relu

bias affine weight

input

backpropagation
A1 = dOt(X, Wl) + bl

Z =max(0, A;) @ (©) @ @
Ay = dOt(Z7 Wz) + by target

E = exp(A)

Y = E/sum; (E)|

C = —sum; (T * log(Y)) softmax

D = sumy(C)/N

B—O—O—

affine Uweight

relu

bias affine weight

input

backpropagation

A1 = dOt(X, Wl) + b1
7' (0, 1) O—-@— 0O
1y = Aol 7, W5) + e S
E = exp(43)
Y = E/sum; (E)
C' = —sum; (T * log(Y)) softmax
D = sumy(C)/N
A ;
(bo— () —)—()
bias affine weight
relu

bias affine weight

input

&L

backpropagation

A1 = dOt(X, Wl) + b1

2 Saisiocay —O0—@—0
Ay = ClOt(Z7 Wg) + bs target

softmax

= eXp(AQ) entropy
Y = E/sum; (E)
C = —sum; (T * log(Y))

D = sumy(C)/N|—

affine Uweight

relu

o%\@>

affine weight

input

5

backpropagation
A1 = dOt(X, Wl) + b1

Z =max(0, A;) @ (©) @ @
Ay = dOt(Z7 Wz) + by rereet entropy

E = exp(A2)

Y = E/sum; (E)

C' = —sum;y (T * log(Y)) softmax

D = sumy(C)/N
[R =3« (W% + W2l %)

affine

weight

input

Ay = dot(X,W1) + by

Z =max(0, A;)
Ay = dot(Z, Ws) + by
E = exp(Az2)

Y = E/sum; (E)
C = —sum; (T * log(Y))
D = sumy(C)/N

R =5+ ([Wil[7 + [IWallz)

backpropagation

target

softmax

decay

B—(®

b A5
Q affine Uweight’\
relu

1
bias affine weight
input

backpropagation
A1 = dOt(X, Wl) + b1

Z = max(0, Ay) @ (c) (D)

Ay = dOt(Z, Wg) + b target htony loss
E = exp(Az2)

Y = E/sum; (E)

C = —sum; (T * log(Y)) softmax

D= sumg()/N
R=3x (||W1||F + (W2l 7)
L—D

®

[(dD, dR) = (dL, dL)

affine

input

weight

backpropagation
A1 = dOt(X Wl) + b1

Z =max(0, A;) @ (c) @ @
Ay = dOt(Z7 Wz) + by rereet entropy

E = exp(A2)

Y = E/sum; (E)

C = —sum; (T * log(Y)) softmax

D—sumg()/N
R=4x (||W1||F + W7
L_D decay

®

(dD, dR) — (dL,dL (b2) As A

7
dWi =dR* \x W, affine weight

dWQZdR*A*WQ

affine

weight

input

backpropagation
A1 = dOt(X, Wl) + b1

Z = max(0, A;) @ (c) @ @
Ay = dOt(Z7 Wz) + by rereet entropy

E = exp(A2)

Y = E/sum; (E)

C = —sum; (T * log(Y)) softmax

D= sumg()/N
R=3x (”WlHF + (W2l 7)
L—D

(dD, dR) — (dL,dL (b2) —(W—®)
dW1 =dR x)\ * W1 i

dWs = dR x A\ x Wy

affine

weight

input

A1 = dOt(X, Wl) + bl

Z = max(0, 4;)
Ay = dot(Z, Wa) + by
E = exp(Ay)

Y = E/sum;(E)
C = —sum; (T * log(Y"))
D= sumg()/N

R= 3+ (|Will7 + [Woll7)

L= D—|—

(dD,dR) = (dL,dL)
dWi =dR* A« W,
dWo = dR x A x Ws
|dA2 =dDx (Y -T)/N

backpropagation

target
entropy
softmax
BB
bias affine weight
relu
affine

bias weight

input

backpropagation

A1 = dOt(X, Wl) + b1

Z = max(0, A;)
A2 = dOt(Z, Wg) + b2
E = exp(A2)

Y = E/sum; (E)
C = —sum; (T * log(Y))
D= sumg()/N

R=3 (Wil + [Wallz)
L= D+

(dD,dR) = (dL,dL)
dW1 :dR*A*Wl
AWy = dR * X x Wy
dAy =dD* (Y —T)/N

AWy +=dot(Z", dAs)

dbg = sumg(dAs)
dZ = dot(dAz, Wy)

target

affine weight

input

A1 = dOt(X, Wl) + bl

Z = max(0, 4;)
Ay = dot(Z, Wa) + by
E = exp(Ay)

Y = E/sum;(E)
C = —sum; (T * log(Y"))
D= sumg()/N

R= 3+ (|Will7 + [Woll7)

L=D+R

(dD,dR) = (dL,dL)
dWi = dR x A W,
dWs = dR x A x Ws
dAy =dD % (Y —T)/N

dWy +=dot(Z",dAy)

dby = sumg(dAs)|—"

dZ = dot(dAy, W,)

backpropagation

target

o—@ @

affine weight

input

backpropagation

A1 = dOt(X, Wl) + b1

Z = max(0, A;)
A2 = dOt(Z, Wg) + b2
E = exp(A2)

Y = E/sum; (E)

C = —sum; (T * log(Y))
D= sumg()/N
R=3 (Wil + [Wallz)
L= D+

(dD,dR) = (dL,dL)
dW1 :dR*A*Wl
AWy = dR * X x Wy
dAy =dD* (Y —T)/N

dWy +=dot(Z",dAy)
dby = sumg(dAs)

dZ = dot(dAs, Wy)|—

target

)

weight

affine

input

backpropagation
A1 = dOt(X, Wl) + b1

Z = max(0, A;) @ (C) @ @
Ay = dot(Z, Ws) + by target
E = exp(Az2)
Y = E/sum; (E)
C = —sum; (T * log(Y))
D= sumg()/N
R =3 (W] + W2l
|
(dD,dR) = (dL,dL) (b)—(A)—)—(r
dWi =dR* XA« W, bias weight
dWs = dR x A x Ws
dAs =dD (Y —=T)/N relu
dWsy +=dot(ZT,dAs)
dbg = sumg(dAs2) @ A @
- - 1 1) 1
dz = dOt(dAQa W,) bias affine weight

[A, = dZ « (Z > 0)|

input

backpropagation
A1 = dOt(X Wl) —+ b1

Z = max(0, A;) @ (C) @
Ay = dot(Z, Ws) + by target
E = exp(A2)
Y = E/sum; (E)
C = —sum; (T *log(Y))
D= sumg()/N
R =3 (W] + W2l
|
(dD,dR) = (dL, dL) () —(A)——V)—
dWi =dRx A« W, bias weight

AWy = dR * X x Wy
dAy =dDx (Y —T)/N
dWs +=dot(Z7,dAy)
dbg = sumq(dAs)

dZ = dot(dAy, Wy)
dA, = dZ (Z > 0)

AW, += dot(X |, dA;)

dbl = Sulng (dAl)

backpropagation
A1 = dOt(X Wl) —+ b1

Z = max(0, A;) @ (C) @
Ay = dot(Z, Ws) + by target
E = exp(A2)
Y = E/sum; (E)
C = —sum; (T *log(Y))
D= sumg()/N
R =3 (W] + W2l
|
(dD,dR) = (dL, dL) () —(A)——V)—
dWi =dRx A« W, bias weight

AWy = dR * X x Wy
dAy =dDx (Y —T)/N
dWs +=dot(Z7,dAy)
dbg = sumq(dAs)

dZ = dot(dAz, Wy)
dA, =dZ x (Z > 0)

AW, +=dot(X |, dA,)

dbl = Sulng (dAl)l—/

automatic differentiation

A1 = dOt(X, Wl) + b1

Z = max(0, A;)
Ay = dOt(Z, Wg) + bo
E = exp(Az2)

Y = E/sum; (E)

C = —sum; (T *log(Y))

D = sumy(C)/N
R=2x(IWi|% + |Wa)2)

L=D+R what is an easy way to automatically
(dD,dR) = (dL,dL) generate the backward code from the
dWi =dRx A« W, forward one?

dW2 =dR x X\ % W2
dAs =dD* (Y —=T)/N
dWy +=dot(Z7,dAy)
dbg = sumq(dAs)

dZ = dot(dAy, W,)
dAy =dZ x (Z > 0)
dW; +=dot(XT,dA;)
db; = sumg(dA;)

automatic differentiation

A1 = dOt(X, Wl) + b1
Z = max(0, A;)
Ay = dOt(Z, Wg) + b
E = exp(Az2)

Y = E/sum; (E)

C = —sum; (T * log(Y))
D = sumy(C)/N

R =5+ (W7 + Wall7)
L=D+R

def relu(A):

(dD,dR) = (dL,dL) def back(dZ,dA):
AW, =dR* A x W, dA+:dZ*(Z>O)|
AWy = dR x X x Wy return node(Z, back)

dAy =dDx (Y —T)/N
dWs +=dot(Z7,dAy)
dbg = sumq(dAs)

dZ = dot(dAy, W)
[dA, = dZ « (Z > 0)
dWi +=dot(X ", dA;)
db; = sumg(dA4;)

automatic differentiation
A1 = dOt(X, Wl) + b1

Ay = dot(Z, W3) + b
E = exp(Az2)

Y = E/sum; (E)

C = —sum; (T * log(Y))
D = sumy(C)/N

R =3+ ([Will% + [Wall2) def relu()
L=D+R Z = max(0, A)

(dD,dR) = (dL,dL) def back(dZ,dA):
dWi1 =dRx A x W, dA+=dZ«(Z > 0)

dWso = dR * X x Wy return node(Z, back)
dAy =dD x (Y —T)/N
dWs +=dot(Z7,dAy)
dbg = sumq(dAs)
dZ = dot(dAy, W,
Z.back(A;)
dW; +=dot(XT,dA;)
db; = sumg(dA4;)

automatic differentiation
|A1 = dOt(X, Wl) + b1

Z =relu(A;)
|A2 = dOt(Z, Wg) + b2
E = exp(Az2)

Y = E/sum; (E)
C = —sum; (T * log(Y))

D = sumy(C)/N def affine(X, (W, b)):

R =3+ (W7 + 1W2ll%) A = doi (X, W) + b|
L=D+R def back(dA,dX, (dW,db)):
(dD,dR) = (dL,dL) AW +=dot(X |, dA)
dWy =dR * X x W, db + = sumg(dA)

AWy = dR + X % Wy dX += dot(dA, WT)
dAs =dD* (Y —T)/N return node(A, back)

dWo +=dot(Z",dAy)
dbg = sumq(dAs)

dZ = dot(dAy, W,)
Z.back(41)

dW; +=dot(X T,dA;)
db; = sumg(dA;)

automatic differentiation

|A1 = aﬂine(X, (Wl, bl))
Z =relu(A;)

|A2 = afﬁne(Z, (WQ, bg))
E = exp(As2)

Y = E/sum; (E)

C = —sum; (T * log(Y))

D = sumy(C)/N def affine(X, (W, b)):

R =3« (Wil + [Wa]2) A = dot(X. W) +b
L=D+R def back(dA, dX, (dW,db)):
(dD,dR) = (dL,dL) AW +=dot(X T, dA)
dWy =dR * XA W, db += sumg(dA)

AWy = dR % \ * W, dX +=dot(dA,WT)
dAs =dD * (Y —T)/N return node(A, back)

[As. back(Z, (W, bs))

Z.back(A;)
[A1. back(X, (W1, b1))

automatic differentiation

Ay = affine(X, (W1, by))

Z =relu(A;)
Ay = affine(Z, (Wy, by))
E = exp(Az2)

Y = E/Suml(E)

C = —sum; (T * log(Y"))
D = sumy(C)/N

R =3+ (W7 + [Wall3)
L=D+R

(dD,dR) = (dL,dL)

dWi =dR* X« W,

def entropy(A4,T):

E = exp(A)

Y = E/sum;(E)

C = —sum; (T * log(Y))
D = sumy(C)/N

def back(dD,dA,):

dWo = dR x) x W-
|dA22: dD :(Y _ %)/N}_//—ﬁdA Y=dDx (Y — T)/N]
return node(D, back)

Ay back(Z, (W2, b))

Z.back(A1)
Ay back(X, (Wi, b))

automatic differentiation

A1 = aﬂine(X, (Wl, bl))
Z =relu(A;)

AQ = afﬁne(Z, (WQ, bg))
[D = entropy(A4,,T)

def entropy(A4,T):
E =exp(A)

R= %+ (|Wi]% + W2l 7) Y = E/sum; (E)
L=D+R C = —sum; (T * log(Y))
(dD,dR) = (dL,dL) D = sumy(C)/N
AWy = dR x X« Wy def back(dD, dA,):
L e
2.- ack Zz: T ba)) return node(D, back)
Z.back(A1)

Al. back(X, (Wl, b1)>

automatic differentiation

Ay = affine(X, (W1, b))
Z =relu(A;)

Ay = affine(Z, (Wa, bsy))
D = entropy(A4,,T)

def decay(W):

R = 2 *sum(||w|;. for w in W)|

[R=3 (W% + W%

i def Dack(dR, AV):

%){ d:chR:*(fi’fo/for (w, dw) in zip(W, dW):

D T vt o, back)
. 2,

Ay.back(Z, (Wa, by))

Z.back(A1)
Aj.back(X, (Wq,by))

automatic differentiation

Ay = affine(X, (W, by)
Z =relu(A;)

Ay = affine(Z, (W, bs))
D = entropy(A42,T)

[R = decay (W1, WQ))k—defR decay(W): = | -
= 5 xsum(||w||z for w in W)

Ld; l;g " iL. dL def Dack(dR, dW):

|§% b7ack(>(l;/1()) for (w,dw) in zip(W,dW):

' : dw +=dR *) w

D.back(A,, T) return node(R, back)

As.back(Z, (W3, bs))

Z.back(A1)
Aj.back(X, (Wq,by))

automatic differentiation

A1 = aﬂine(X, (Wl, bl))
Z =relu(A;)

A2 = afﬁne(Z, (Wg, bg))
D = entropy(A4,,T)

def add(X):
R = decay((W1, W3)) S = s(um)(X)
def back(dS, dX):
[(dD.dR) = (dL adL)i_\for dz in dX:
R.back((W7, W3)) dr +=4dS
return node (S, back)

D.back(A3,T)
A2. back(Z, (WQ, bg))

Z.back(A1)
Al. back(X, (Wl, b1)>

automatic differentiation

A1 = aﬂine(X, (Wl, bl))
Z =relu(A;)

A2 = afﬁne(Z, (Wg, bg))
D = entropy(A4,,T)

def add(X):

R = decay((W1, W}f))/ S = sum(X)

L = add((D, R)I) def back(dS, dX):
L.back((D, R)) for dz in dX:
R. baCk((W1, Wg)) dr +=dS

D.back(Ag, T) return node(S, back)

A2. back(Z, (WQ, bg))

Z.back(A1)
Al. back(X, (Wl, b1)>

automatic differentiation

A1 = aﬂine(X, (Wl, bl))
Z =relu(A;)
AQ = afﬁne(Z, (WQ, bg))

D = entropy(A4,,T)

R = decay((W1, W2)) def loss(A, T, W):
L =add((D, R)) D = entropy (4, T)
L.back((D, R)) R = decay (W)

R. back((Wy, Wa)) L = add((D, R))
D back(Ay, T) def back(A,T,W):
. back(As, L.back((D, R
AQ. back(Z, (Wg,bg)) R. back((()))

D.back(A,T

)
turn block(L, back
7. back(Ay) return block(L, back)

Al. back(X, (Wl, b1)>

automatic differentiation

Ay = affine(X, (W7, b))
Z =relu(A;)

A2 = afﬁne(Z, (Wg, bg))
|L = IOSS(AQ, T, (Wl, Wg))

def loss(A, T, W):
D = entropy(A,T)

[L. back(Ay, T, (Wy, W3)) R = decay (W)

L = add((D, R))

As.back(Z, (W2, b)) R.back

D. back

def back(A,T,W):
L.back((D

(W)
(A,

T

R))

Z.back(A1)
Al. back(X, (Wl, b1)>

)
return block(L, back)

automatic differentiation
A1 = aﬂine(X, (Wl, bl))

Z =relu(A;)
Aq = affine(Z, (W, bz)) def Toss(A, T, W):
L =loss(As, T, (W1, W e ’
oss(A2, T, (W1, W2)) L = entropy(A, T) + decay (W)
return block(L)
def loss(A, T, W):
D = entropy(A,T)
L.back(As, T, (W1, Ws)) R = decay (W)
L = add((D, R))
back(A, T,
L back((P. R
Ag.back(Z, (Wg,bg)) R. ¢))
. back(A,

Z.back(Ay) return block(L, back)

Al. back(X, (Wl, b1)>

automatic differentiation

A1 = aﬂine(X, (Wl, bl))
Z =relu(A;)

A2 = afﬁne(Z, (Wg, bg))
L= IOSS(AQ, T, (Wl, Wg))

def model(X, (U, Us)):
Al = affine(X, Uy)

L.back(As, T, (W1, W3)) = relu(A)
AQ = affine(Z, Us)
def back(X, (U1, Us)):
Ay back(Z, Us)

Ay.back(Z, (W2, by)) Z.back(A)

Aj.back(X,U;)
return block(As, back)

Z.back(A1)
Al. back(X, (Wl, b1)>

automatic differentiation

[Ay = model(X, (W1, by), (W, b))

L =loss(Ay, T, (W1, Wa))

def model(X, (U, Us)):
Al = affine(X, Uy)

L.back(Ag, T, (W1, W3)) = relu(A)

(

AQ = affine(Z, Us)

def back(X, (Uy, 02)):
T — S

Aj.back(X,U;)

return block(As, back)

Az = model(X

L =loss(As,

L.back(As,

As. back(X

automatic differentiation

T> (Wh WQ))

T? (Wh WQ))

, (W1, b1), (Wa, bs)))

, (W1,by), (Wa, ba)))

def model(X

) (Ulv UQ)):

A = affine(relu(affine(X, Uy)), Uz)

return block(A)

def model(X, (1, Ug))l
Al = affine(X, Uy)
= relu(4)
AQ = affine(Z, Us)
back(X, (Ul,
A2. k 2)
Z.b
1. back(X, Uy

return block(As, back)

convolution

10 classes, 60k training images, 10k test images, 28 x 28 images

fully connected layers

e a two-layer network with fully connected layers can easily learn to
classify MNIST digits (less that 3% error), but learns more than
actually required

shuffling the dimensions

shuffling the dimensions

convolution

e convolution results in sparser connections between units, local
receptive fields, translation equivariance, shared weights and less
parameters to learn

convolution

e convolution results in sparser connections between units, local
receptive fields, translation equivariance, shared weights and less
parameters to learn

e a convolutional network performs better (less than 1% error), but not
on shuffled digits

LTI systems and convolution
o discrete-time signal: z[n], n € Z
e translation (or shift, or delay) t;(x)[n] = x[-kl keZ
e unit impulse d[n] = 1[n = 0], so that z[n| = Zx E]o[n —
k

LTI systems and convolution

discrete-time signal: z[n], n € Z
translation (or shift, or delay) t;(z)[n] = x[— k], ke Z
unit impulse d[n] = 1[n = 0], so that z[n| = Zx

k

linear system (or filter)

f (Z am) => aif(x)
i i
time-invariant (or translation equivariant) system

ftr(z)) = te(f(2))

LTI systems and convolution

o discrete-time signal: z[n|, n € Z
e translation (or shift, or delay) tx(x)[n] = x[— k], ke Z
e unit impulse 0[n] = 1[n = 0], so that z[n Zx

k

e linear system (or filter)

f (Z aﬂ?i) => aif(x)
i i
e time-invariant (or translation equivariant) system

f(te(z)) = te(f(2))
e if fis LTI with impulse response h = f(§), then f(x) = x x h:

f(@)n] = f <Z x[’f]tk@) [n] = > alk]tx(£(6))[n]

k

LTI systems and convolution

o discrete-time signal: z[n|, n € Z
e translation (or shift, or delay) tx(x)[n| = z[n—kl|, k € Z

e unit impulse 6[n] = 1[n = 0], so that z[n| 5 Zx[k]cs[n — k]
k

e linear system (or filter)

((Zee)

e time-invariant (or translation equivari

k

LTI systems and convolution
discrete-time signal: z[n], n € Z
translation (or shift, or delay) tx(x)[n| = x[— k], ke Z
unit impulse d[n] = 1[n = 0], so that x[n Zx
k

linear system (or filter)

f (Z am) => aif(x)
i i
time-invariant (or translation equivariant) system

ftr(z)) = te(f(2))

LTI systems and convolution

o discrete-time signal: z[n|, n € Z
e translation (or shift, or delay) tx(x)[n] = x[— k], ke Z
e unit impulse 0[n] = 1[n = 0], so that z[n Zx

k

e linear system (or filter)

f (Z am) => aif(x)
i i
e time-invariant (or translation equivariant) system

f(t(z) = ti(f(2))
e if fis LTI with impulse response h = f(J), the

z*xh

convolution

o
o
T

-2 0
-2 0
T T
\ \
-2 0

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

z*xh

convolution

-

o
o
T

—4 -2 0
T

'

—4 -2 0
T T

.

—4 -2 0

z*xh

convolution

-

o
o
T

—4 -2 0
T

Py

—4 -2 0
T T

.

—4 -2 0

z*xh

convolution

-

o
o
T

z*xh

convolution

-

z*xh

convolution

-

e

z*xh

convolution

-

e

z*xh

convolution

-

e

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

2d convolution

T Txh

convolution in feature maps

filter 1

input

filter weights shared
among all spatial positions

T
//
//
//
//
L~

output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1
11
//
//
//
L1
//
L1
L~
-1

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1
11
L1
L1
//
//
//
//
e s

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

\

\

L

-

\

P
|-

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

L1
f//

\

\
\

|
1]
//

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1
1
//’
|
//
///
L1
- |~

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1
1
//’
L1
L1
//
//
e s

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

\

\

\
L
\

P
|-

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

-

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

-

1

input output 1

convolution in feature maps

filter weights shared
among all spatial positions

filter 1

L

-

1

input output 1

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

A\

\

LY
me
N
\

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

1]

1 1

AN

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

111

1 1

\

AN

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

AL
mey
YU

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

A\

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

O
me
\

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

A\
muy

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

input output 2

convolution in feature maps

new filter, but still shared
among all spatial positions

filter 2

input output 2

convolution in feature maps

new filter, but still shared
| among all spatial positions

filter 2

input output 2

convolution in feature maps

new filter, but still shared
| among all spatial positions

filter 2

input output 2

convolution in feature maps

different filter for each
output dimension

filter 3

|-

input output 3

convolution in feature maps

different filter for each
|l output dimension

filter 4

\\

input output 4

convolution in feature maps

different filter for each
output dimension

filter 5

input output 5

convolution in feature maps

1 x 1 filter is matrix
multiplication

filter 5

input output 5

LeNet-5

[LeCun et al. 1998]

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
30432 6@28x28

S2: f. maps
6@14x14

Full conAection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

e sub-sampling gradually introduces translation, scale and distortion
invariance

e non-linearity included in sub-sampling layers as feature maps are
increasing in dimension

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.

ImageNet

e 22k classes, 156M samples

o ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

AlexNet

[Krizhevsky et al. 2012]

EN
@ +X j\r BN
192 192 128 204 2028 \dense
128 —
13
10 itk
3T 13 dense
000
192 128 Max L]
Max 128 Max pooling 204 2048

pooling pooling

e implementation on two GPUs; connectivity between the two
subnetworks is limited

e RelLU, data augmentation, local response normalization, dropout

e outperformed all previous models on ILSVRC by 10%

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

learned layer 1 kernels
[Krizhevsky et al. 2012]

e 96 kernels of size 11 x 11 x 3
o top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

visualizing intermediate layers
[Zeiler and Fergus 2014]

e reconstructed patterns from top 9 activations of selected features of
layer 4 and corresponding image patches

Zeiler, Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.

challenges and applications

challenges

optimizing

initializing

regularizing

enabling deeper networks

learning activation functions

learning the architecture

designing task-specific architectures and loss functions
transferring to new domains and tasks

learning without supervision

challenges

optimizing

initializing

regularizing

enabling deeper networks

learning activation functions

learning the architecture

designing task-specific architectures and loss functions
transferring to new domains and tasks

learning without supervision

first-order optimization

e loss function

L=FX,T;:0)= Y f(xi,t:0)= > fa(6)

n€[N] n€[N]

e (batch) gradient descent

1 of
t+1 _ pt _ Z n ot
o7 =90 ‘N 09(9)
ne[N]

first-order optimization

e loss function

L=FX,T;0)= > f(xit;0)= > fu(6
ne[N] ne(N]
e (batch) gradient descent
1 of.
t+1 _ pt n ot
0 =0 — e P CA)

ne[N] 06

e stochastic (mini-batch) gradient descent
Ofn
0t+1 77«
|Bt‘ Z
neBt

makes sense when training set is redundant and each each mini-batch
is representative of the entire set

first-order optimization

e momentum: good against noisy gradient and ill-conditioning

20

10

0

—10

—20

—30

-30 —20 =10 0 10 20

N\

-30 -
—-30 —20 —-10 O 10 20

credit: Goodfellow, Bengio, Courville, 2017. Deep learning.

first-order optimization

e momentum: good against noisy gradient and ill-conditioning

—10

—20

—30
-30 —20 =10 0 10 20

e several other methods, but all requiring careful tuning of learning rate

credit: Goodfellow, Bengio, Courville, 2017. Deep learning.

Hessian-free optimization
[Martens ICML 2010]

e Newton's method

6"t — o' — [Hf(6")] 'V f(6")

Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.

Hessian-free optimization
[Martens ICML 2010]

e Newton’'s method

0! = 6" — [Hf(6")'V (6"

e solve linear system
[Hf(6")]p = V(0"

by conjugate gradient (CG) method, where matrix-vector products of
the form [Hf(0")]d are computed by back-propagation

Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.

batch normalization
[loffe and Szegedy 2015]

e samples are element-wise normalized to zero-mean, unit-variance over
mini-batch

’Bt| Z

i€Bt

o > (i
v |Bt|
i€Bt

t
Xi— MK

i YV —F—— T
Vi o e, s

loffe and Szegedy. ICML 2015 - Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift

batch normalization
[loffe and Szegedy 2015]

e samples are element-wise normalized to zero-mean, unit-variance over
mini-batch

’Bt| Z

i€Bt

o > (i
v |Bt|
i€Bt

t
Xi — M

Yi &V —F—F——

‘ Vot + €

e this reduces “internal covariate shift”, stabilizing the distribution of
each layer's inputs

+8

e it helps with saturating non-linearities and vanishing gradient, allows
accelerating learning and reduces the need for regularization

loffe and Szegedy. ICML 2015 - Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.

batch normalization
[loffe and Szegedy 2015]

= = =lInception

————— BN-Baseline

------- BN-x5

BN-x30

4+ BN-x5-Sigmoid
4 Steps to match Inception
T T T

I I
5M oM 15M 20M 25M 30M

e allows to increase learning rate, remove local response normalization
and dropout, and reduce weight decay

loffe and Szegedy. ICML 2015 - Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift

residual networks
[He et al. 2016]

error (%)
error (%)

ZGO

20 30
iter. (1e4)

e when initialization, normalization and

ResNet-18 ~ AN,
— ResNet-34 34-layer
10 20 30 40 50
iter. (1e4)

optimization are appropriately

addressed, a degradation is exposed with increasing depth

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.

residual networks
[He et al. 2016]

e “it is easier to push a residual to zero than to fit an identity mapping
by a stack of nonlinear layers”

conv layer

conv layer

e trained up to 152 layers
e won first place on several ILSVRC and COCO 2015 tasks

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.

reversible networks
[Gomez et al. 2017]

e consist of a chain of reversible blocks

ER e g

Y1
Y2

=x1 + F(x2) x1 =y1 — F(x2)
x2 + G(y1) x2 =y2 + G(y1)

Gomez, Ren, Urtasun, Grosse. 2017

The Reversible Residual Network: Backpropagation Without Storing Activations

reversible networks
[Gomez et al. 2017]

e consist of a chain of reversible blocks

ER e g

y1 =x1 + F(x2) x1 =y1 — F(x2)
y2 = X2+ G(y1) X2 =y2+ G(y1)

e activations can be recomputed during backward pass
e memory is constant in the number of layers!

e trained up to 600 layers on single GPU

Gomez, Ren, Urtasun, Grosse. 2017. The Reversible Residual Network: Backpropagation Without Storing Activations.

spatial transformer networks
[Jaderberg et al. 2015]

e predict a spatial transformation to localize an object, apply the
transformation, resample and classify

e trained end-to-end

Jaderberg, Simonyan, Zisserman, Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.

deformable convolution

[Dai et al. 2017]

image

o learn to predict offsets used in convolution as a function of the input

e automatically adjust receptive field per unit

Dai, Qi, Xiong, Li, Zhang, Hu, Wei. 2017. Deformable Convolutional Networks.

deformable convolution
[Dai et al. 2017]

o learn to predict offsets used in convolution as a function of the input
image

e automatically adjust receptive field per unit

Dai, Qi, Xiong, Li, Zhang, Hu, Wei. 2017. Deformable Convolutional Networks.

“you only look once”
[Redmon et al. 2016]

1. Resize image.
2. Run convolutional network.
3. Threshold detections.

o learn to detect objects as a single classification and regression task,
without scanning the image or detecting candidate regions

e first object detector to operate at 45fps

Redmon, Divvala, Girshick, Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once”
[Redmon et al. 2016]

i

Resize The Image Divide The Image Train The Network 1st - 20th Ch | Last 4 Ch |
And bounding boxes to 448 x 448. Into a 7 x 7 grid. Assign detections to To predict this grid of class probabilities Class probabilities Box coordinates
grid cells based on their centers. and bounding box coordinates. Pr(Airplane), Pr(Bike)... X, Y, W,

o learn to detect objects as a single classification and regression task,
without scanning the image or detecting candidate regions

e first object detector to operate at 45fps

Redmon, Divvala, Girshick, Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

fully convolutional networks
[Long et al. 2015]

forward/inference

_ backward/learning

e learn to upsample and produce images of the same resolution and the
input image

e apply to pixel-dense prediction tasks

Long, Shelhamer, Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.

fully convolutional networks
[Long et al. 2015]

FCN-8s SDS [15] Ground Truth

Image

e learn to upsample and produce images of the same resolution and the
input image

e apply to pixel-dense prediction tasks

Long, Shelhamer, Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.

UberNet

[Kokkinos 2017]

Input Boundaries Saliency Normals

i

Detection Semantic Boundaries & Segmentation ~ Human Parts

e learn several vision tasks with a joint network architecture including
task-specific skip layers

Kokkinos. CVPR 2017. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using
Diverse Datasets and Limited Memory.

geometric matching
[Rocco et al. 2017]

Image A Aligned A (affine) Aligned A (affine+TPS) Image B

e mimic the standard steps of feature extraction, matching and
simultaneous inlier detection and model parameter estimation

e still trainable end-to-end

Rocco, Arandjelovic, Sivic. CVPR 2017. Convolutional Neural Network Architecture for Geometric Matching.

photorealistic style transfer
[Luan et al. 2017]

Toput NS Owurs

{a) Reference style image (b) Input image () Neural Style (distortions) (d) Owr result (&) Insets

Luan, Paris, Shechtman, Bala. CVPR 2017. Deep Photo Style Transfer.

unsupervised learning and
image retrieval

siamese architecture
[LeCun et al. 2005]

I

loss k— tij

yi = g(xi; 0)/ \yj' = g(x;;0)
g 0 g

T |

X; Xj

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.

manifold learning
[LeCun et al. 2006]
e input samples x;, output vectors y; = g(x;; 0)
e target variables ¢;; = 1[sim(x;, ;)]
e contrastive loss

2
lij = tijlly: = yill* + (L= tij)[m — lly: = y;l15

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

manifold learning
[LeCun et al. 2006]
e input samples x;, output vectors y; = g(x;; 0)
* target variables t;; = 1[sim(x;,x;)]
e contrastive loss

2
Cij = tiglly: — v I+ (1= ti)[m — Iy — vl

similar

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

manifold learning
[LeCun et al. 2006]
e input samples x;, output vectors y; = g(x;; 0)
e target variables ¢;; = 1[sim(x;, ;)]
e contrastive loss

2
Cij = tijlly: — yilI? + (1= tig)lm — Iy — v 115

dissimilar

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

manifold learning
[LeCun et al. 2006]

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

triplet architecture
[Wang et al. 2014]

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.

learning to rank
[Wang et al. 2014]

e input “anchor” x;, output vector y; = g(x;; 0)
e positive yj = g(x;’; 0), negative y; = g(x; ;0)
e triplet loss
b= [m+lyi -y 12— llyi— i 17,

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.

unsupervised learning by solving puzzles
[Doersch et al. 2015]

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.

unsupervised learning by solving puzzles
[Doersch et al. 2015]

| A
fc9 (8)
fc8 (4096)
[fc7 (4096) |
P -
fc6 (4096) f-------- fc6 (4096)
pool5 (3x3,256,2) pool5 (3x3,256,2)
conv5 (3x3,256,1) | -=--=-=----1 conv5 (3x3,256,1)
conv4 (3x3,384,1) p--------- conv4 (3x3,384,1)
conv3 (3x3,384,1) f--------1 conv3 (3x3,384,1)
LRN2 LRN2
pool2 (3x3,384,2) pool2 (3x3,384,2)
conv2 (5x5,384,2) f---=-=----1 conv? (5x5,384,2)
LRN1 LRN1
pooll (3x3,96,2) pooll (3x3,96,2)
convl (11x11,96,4)F - === ----1 convl (11x11,96,4)

e e

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.

unsupervised learning by watching video
[Wang et al. 2015]

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.

unsupervised learning by watching video
[Wang et al. 2015]

Learning to Rank

| |
[1 1

Conv Conv Conv
Net Net Net

Query Tracked Negative D pistance in deep feature space
(First Frame) (Last Frame) (Random)

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.

unsupervised learning by watching video
[Wang et al. 2015]

Query
(First Frame)

Tracked

Query

(First Frame) (
’

Tracked d
(Last Frame) »

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.

ranking by CNN features

[Krizhevsky et al. 2012]

o use the last fully-connected layer features

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

neural codes
[Babenko et al. 2014]

Layer 6 Layer 7

Output

= = =

1000

4096 4096

e investigate more than the last fully-connected layer

e fine-tune by softmax on 672 classes of 200k landmark photos

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.

neural codes
[Babenko et al. 2014]

e investigate more than the last fully-connected layer

e fine-tune by softmax on 672 classes of 200k landmark photos

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.

fine-tuning
[Gordo et al. 2016]

e clean landmark images by pairwise matching

o fine-tune by triplet architecture and regional max-pooling (R-MAC)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.

fine-tuning
[Gordo et al. 2016]

Triplet loss

>
o T =an|] [Shift |] M|]
=] ROI
© pool e2 FT: l 2 E L 2 \
g N
3 ROI Shift
& pool e2 F‘E e2 E €2
2 3
© o
> &
K}
3 N — 8 — I —
= ROI Shift /
S pool Lo i Ly > ly
= L FC L | L L

e clean landmark images by pairwise matching

o fine-tune by triplet architecture and regional max-pooling (R-MAC)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.

unsupervised fine-tuning
[Radenovic et al. 2016]

(positive)
o reconstruct 700 3d models with 160k images by SfM on 7M images

e fine-tune by siamese architecture and global max-pooling (MAC)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.

unsupervised fine-tuning
[Radenovic et al. 2016]

(negative)

o reconstruct 700 3d models with 160k images by SfM on 7M images

e fine-tune by siamese architecture and global max-pooling (MAC)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.

graph-based methods

query expansion and searching on manifolds
[Iscen et al. 2017]

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.

query expansion and searching on manifolds
[Iscen et al. 2017]

e now that images are represented by a global descriptor or just a few
regional descriptors, graph methods are more applicable than ever

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.

query expansion as a linear system
[Iscen et al. 2017]

e reciprocal nearest neighbor graph on images or regions
e symmetrically normalized adjacency matrix W

e regularized Laplacian
I—aW

L =
@ 11—«

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.

query expansion as a linear system
[Iscen et al. 2017]

e reciprocal nearest neighbor graph on images or regions
e symmetrically normalized adjacency matrix W

e regularized Laplacian

Ca:I—aW
11—«

e initial query: sparse observation vector
y; = 1[i is query (or neighbor)]

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.

query expansion as a linear system
[Iscen et al. 2017]

e reciprocal nearest neighbor graph on images or regions
e symmetrically normalized adjacency matrix W

e regularized Laplacian
I—aW

L =
@ 11—«

e initial query: sparse observation vector
y; = 1[i is query (or neighbor)]

e query expansion: solve linear system

Lox =Yy

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.

searching on manifolds as smoothing
[Iscen et al. 2017]

o express £-! using a transfer function
o

L7 =heW)=(01—-a)I —aW)™!

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing
[Iscen et al. 2017]

o express £ ! using a transfer function
Lt =heOW)=(1—-a)I —aW)™!
e given any matrix function h, we want to compute
x =h(W)y

without computing h(W)

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

o eigenvalue decomposition of W

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

e low-rank approximation

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

wah(A) ur |y

¢ (under conditions on h and A)

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

wah(A) ur |y

diagonal sparse

e dot-product search

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

xwf—lh(A> F y

e linear graph filter in frequency domain

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

searching on manifolds as smoothing

—a=0.99

—a=09 ||
— a=0.7

ha(z)

o low-pass filtering in the frequency domain

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.

unsupervised object discovery
[Siméoni et al. 2016]

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery
[Siméoni et al. 2016]

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery
[Siméoni et al. 2016]

dataset

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery
[Siméoni et al. 2016]

dataset feature saliency

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery
[Siméoni et al. 2016]

Vv

dataset feature saliency FS regions

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery
[Siméoni et al. 2016]

Vv

dataset feature saliency

FS regions

T
e a
\/

region graph

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery

[Siméoni et al. 2016]

dataset

feature saliency

—

FS regions

object saliency

o-l,‘z‘}vo
A% <7
el

region graph

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

unsupervised object discovery
[Siméoni et al. 2016]

dataset feature saliency FS regions

—

A \o
A% <7
\‘Q‘N?l

OS regions object saliency region graph

Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.

class activation mapping (CAM)
[Zhou et al. 2016]

<zo0

<zZ0O0O
<Z00
<zZz00

e global average pooling

S, = Zw,‘é Z Ag(z,y)
k T,y

Zhou, Khosla, Lapedriza, Oliva, Torralba. CVPR 2016. Learning Deep Features for Discriminative Localization.

class activation mapping (CAM)
[Zhou et al. 2016]

<zZ0O0O
<Z00
<zZz00
<zZOoO

e global average pooling

5= St Y Ay = Y ui Ao
k z,y

x’y k

Zhou, Khosla, Lapedriza, Oliva, Torralba. CVPR 2016. Learning Deep Features for Discriminative Localization.

class activation mapping (CAM)
[Zhou et al. 2016]

<zZ0O0O
<Z00
<zZz00
<zZOoO

e global average pooling /\

S, = Zw,‘é ZAk(x,y) = Z Zw,ﬁAk(x,y) — Z M (z,y)
k ,y k z,y

x’y

Zhou, Khosla, Lapedriza, Oliva, Torralba. CVPR 2016. Learning Deep Features for Discriminative Localization.

class activation mapping (CAM)
[Zhou et al. 2016]

W1

‘GA> O Wy

W
o N !
b !

e global average pooling /\

<Z00O
<ZO0O0O
<Z00O
<z00

n

Class
Activation
Map

(Australian terrier)

Se = Zwﬁ ZAk(:r,y) = Z Zw,ﬁAk(x,y) = Z M (z,y)
k z,y k z,Y

x’y

Zhou, Khosla, Lapedriza, Oliva, Torralba. CVPR 2016. Learning Deep Features for Discriminative Localization.

cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]

A ’F—)

—

s

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.

cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]

A ’F—)

—

w

s

e spatial weights (visual saliency)

F(.’E,y) = ZAk(xvy)
k

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.

cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]

A F—>

I

w

s

e spatial weights (visual saliency)

F(:E,y) = ZAk(fl?,y)
k

o channel weights (sparsity sensitive)

wy, = —log (e +y 11[Ak(567y)]>

x’y

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.

cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.

feature saliency (FS) map

e channel weights (sparsity sensitive, as in CroW)

wy, = —log (6 +>]l[Ak($7y)]>

"'E)y

feature saliency (FS) map

e channel weights (sparsity sensitive, as in CroW)

wy, = —log (e +) LAz, y)])

w)y

o feature saliency map (as in CAM)

F(l‘,y) = Zkak(I7y)
k

feature saliency (FS) map

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

region detection with EGM
[Avrithis and Kalantidis 2012]

* expanding Gaussian mixtures (EGM)
* generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.

graph centrality

e construct graph from detected regions

Katz. Psychometrika 1953. A New Status Index Derived From Sociometric Analysis.

graph centrality

e construct graph from detected regions

e |ocal search
Lox=Y

where y; = 1[i is query]

Katz. Psychometrika 1953. A New Status Index Derived From Sociometric Analysis.

graph centrality

e construct graph from detected regions
e local search
Lox=Y
where y; = 1[i is query]

o global centrality (Katz)
Log=1

Katz. Psychometrika 1953. A New Status Index Derived From Sociometric Analysis.

object saliency (OS) map

S(p) = ﬁ’(p) Z sim(v;, up) figi
ieNp

object saliency (OS) map

S(p) = F(p) Z sim(v;, up) figi

/ iENp

object saliency (OS) map

S(p) = F(p) Z sim(v;, up) figi

/ iENp

patch descriptor

object saliency (OS) map

S(p) = F(p) Z sim(v;, up) figi

/ iENp
patch T

descriptor

neighbors

object saliency (OS) map

similarity

S(p) = F(p) Z sim(v;, up) figi

/ iENp
patch T

descriptor

neighbors

object saliency (OS) map

similarity FS

|~

S(p) = F(p) Z sim(v;, up) figi

/ iENp
patch T

descriptor

neighbors

object saliency (OS) map

similarity FS

|~

S(p) = F(p) Z sim(v;, up) figi «—— centrality

/ iENp
patch T

descriptor

neighbors

object saliency (OS) map

FS similarity FS

— T

S(p) = F(p) Z sim(v;, up) figi «—— centrality
ieNp

patch T descriptor

neighbors

object saliency (OS) map

FS similarity FS

— T

0s »S(p) = F(p) Z sim(v;, up) figi «—— centrality
ieNp

patch T descriptor

neighbors

object saliency (OS) map

image

object saliency (OS) map

object saliency (OS) map

graph W

object saliency (OS) map

graph W

object saliency (OS) map

graph W

object saliency (OS) map

image

FS versus OS (Oxford 5k)

FS versus OS (INSTRE)

what does OS find?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

saliency precision

e precision: sum of saliency over ground truth regions, normalized by
the sum over the entire image

global image representation

fine-tuned VGG features [Radenovic et al. 2016]

compute FS, detect regions with EGM and construct graph
compute OS for each image in the dataset

re-detect regions with EGM

max-pool over regions, sum-pool globally as in R-MAC

global versus regional

90 - 50ms

mAP

80 % __—e—* T i
—e— R-Match + QE
—e— R-Match

70 | | | T T
1 3 5 10 21

regions per image

o regional search: O(n) space and O(n?) query time, where n is the
number of regions (descriptors) per image

e same performance with 5 times less memory and = 4 times faster

state of the art (global)

| Method | QE [Instre | Oxford | Oxford105k |
MAC - | 485 | 797 73.9
R-MAC - | 417 | 777 70.1
FS.EGM * - 484 | 715 70.2
OS.EGM * - 50.1 79.6 71.8
OS.EGM-A* | - 537 | 798 71.4
MAC v | 718 | 874 86.0
R-MAC v | 703 | 857 82.7
FSEGM* | v | 712 | 8938 87.9
OSEGM* | v | 727 | 904 88.0
0S.EGM-A* | v | 754 | 90.1 84.3

e always better than R-MAC, up to 6% at large scale
e compete MAC, even though network was optimized for that
e most gain with QE

summary

e let's go and learn with as little supervision as possible!

joint work with

Oriane Siméoni Ahmet Iscen

Teddy Furon Ondrej Chum

unsupervised object discovery
https://arxiv.org/abs/1709.04725

fast spectral ranking
https://arxiv.org/abs/1703.06935

diffusion on region manifolds
https://arxiv.org/abs/1611.05113

I d

: informatiques #Fmathémstiques

thank youl!

https://arxiv.org/abs/1709.04725
https://arxiv.org/abs/1703.06935
https://arxiv.org/abs/1611.05113

